A geometric proof of the mumford compactness theorem

  • Friedrich Tomi
  • A. J. Tromba
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1306)


Riemann Surface Half Plane Isometry Group Morse Theory Orientation Preserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. BLASCHKE, Vorlesungen über Differentialgeometrie I.Google Scholar
  2. [2]
    J. MILNOR, "Morse Theory", Annals of Math. Studies 51 (1963).Google Scholar
  3. [3]
    D. MUMFORD, A remark on Mahler's compactness theorem, Proc. AMS 28 (1971), 289–294.MathSciNetzbMATHGoogle Scholar
  4. [4]
    F. TOMI and A. J. TROMBA, On Plateau's problem for minimal surfaces of higher genus in ℝ3. Bull. AMS 13 (1985), 169–171.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    F. TOMI and A. J. TROMBA, Existence theorems for minimal surfaces of non-zero genus spanning a given contour in ℝ3 (to appear).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Friedrich Tomi
    • 1
    • 2
  • A. J. Tromba
    • 1
    • 2
  1. 1.Mathematisches Institut der UniversitätHeidelberg
  2. 2.Department of MathematicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations