Advertisement

Complete bilinear forms

  • Anders Thorup
  • Steven Kleiman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)

Keywords

Line Bundle Orbit Closure Canonical Isomorphism Unique Section Projective Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, “Algèbre I,” Chap. 1–3, Hermann, 1970.Google Scholar
  2. 2.
    ____, “Algèbre,” Chap. 10. Algèbre homologique, Masson, 1980.Google Scholar
  3. 3.
    C. DeConcini, and C. Procesi, Complete symmetric varieties, in “Invariant Theory,” Proceedings, Montecatini, ed. F. Gheradelli, Springer Lecture Notes, No. 996, 1983, pp. 1–44; II, Preprint, Fall 1983.Google Scholar
  4. 4.
    C. DeConcini, D. Eisenbud, and C. Procesi, Young Diagrams and Determinantal Varieties, Inventiones Math. 56 (1980), 129–165.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. DeConcini, M. Goresky, R. MacPherson, and C. Procesi, ON THE GEOMETRY OF QUADRICS AND THEIR DEGENERATIONS, Preprint IHES/M/86/19.Google Scholar
  6. 6.
    S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in “Mathematical Developments arising from Hilbert Problems,” Proc. Sympos. in Pure Math. XXVIII, AMS, 1976, pp. 445–482.Google Scholar
  7. 7.
    S. Kleiman, CHASLES'S ENUMERATIVE THEORY OF CONICS: A HISTORICAL INTRODUCTION, in “STUDIES IN ALGEBRAIC GEOMETRY,” MAA Studies in Mathematics, vol. 20, ed. A. Seidenberg, 1980, pp. 117–138.Google Scholar
  8. 8.
    S. Kleiman and J. Landolfi, Geometry and deformation of special Schubert varieties, in “Algebraic geometry,” Proc. Oslo 1970, ed. F. Oort, Wolters-Noordhoff, 1972, pp. 97–124.Google Scholar
  9. 9.
    S. Kleiman and A. Thorup, INTERSECTION THEORY and ENUMERATIVE GEOMETRY. A Decade in Review, in “Proceedings of the AMS Summer Institute in Algebraic Geometry,” Bowdoin, 1985 (to appear).Google Scholar
  10. 10.
    D. Laksov, Notes on the evolution of complete correlations, in “Enumerative and Classical Algebraic Geometry,” Proceedings Nice 1981, ed. Le Barz and Hervier, Birkhäuser, Progress in Math. 24, 1982, pp. 107–132.Google Scholar
  11. 11.
    D. Laksov, Complete Quadrics and Linear Maps, in “Proceedings of the AMS Summer Institute in Algebraic Geometry,” Bowdoin, 1985 (to appear).Google Scholar
  12. 12.
    D. Laksov, “COMPLETE LINEAR MAPS I, THE GEOMETRY,” Preprint Royal Institute of Technology, Stockholm 70, Sweden, Fall 1986.Google Scholar
  13. 13.
    T. Muir, “A Treatise on the Theory of Determinants,” revised and enlarged by W. H. Metzler, Longmans, Green and Co., 1933; corrected and republished by Dover.Google Scholar
  14. 14.
    J. Tyrrell, Complete quadrics and collineations in S n, Mathematica 3 (1956), 69–79.MathSciNetzbMATHGoogle Scholar
  15. 15.
    T. Uzava., “Equivariant compactifications of algebraic symmetric spaces,” Preprint, Fall 1985.Google Scholar
  16. 16.
    I. Vainsencher, Schubert calculus for complete quadrics, in “Enumerative and Classical Algebraic Geometry,” Proceedings Nice 1981, ed. Le Barz and Hervier, Birkhäuser, Progress in Math. 24, 1982, pp. 199–235.MathSciNetzbMATHGoogle Scholar
  17. 17.
    I. Vainsencher, Complete Collineations and Blowing up Determinantal Ideals, Math. Ann. 267 (1984), 417–432.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Anders Thorup
    • 1
  • Steven Kleiman
    • 2
  1. 1.Matematisk InstitutKøbenhavns UniversitetKøbenhaven ØDenmark
  2. 2.Mathematics Department2-278 M. I. T.CambridgeUSA

Personalised recommendations