Computing chow groups

  • F. Rosselló Llompart
  • S. Xambó Descamps
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)


Exact Sequence Betti Number Finite Type Hilbert Scheme Homology Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bialynicki-Birula, A. [1973]. Some theorems on actions of algebraic groups. Ann. Math. 98(1973),480–497.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bialynicki-Birula, A. [1976]. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Polon. Sci., Ser. Math. Astr. Ph. 24(1976),667–674.MathSciNetzbMATHGoogle Scholar
  3. Elencwajg, G., Le Barz, P. [1985a]. Applications Enumératives du calcul de Pic(HilbkP2). Preprint, 1985.Google Scholar
  4. Elencwajg, G., Le Barz, P. [1985b]. Anneau de Chow de Hilb3P2. CR Acad. Sc. Paris 301 (1985), 635–638.zbMATHGoogle Scholar
  5. Ellingsrud, G., Strømme, S. [1984]. On the homology of the Hilbert scheme of points in the plane. Preprint, 1984. (Inventiones 87 (1987)).Google Scholar
  6. Fulton, W. [1984]. Intersection Theory. Ergebnisse 2 (new series), Springer-Verlag, 1984.Google Scholar
  7. Fulton, W., MacPherson, R. [1981]. Categorical framework for the study of singular spaces. Mem. Amer. Math. Soc. 243 (1981).Google Scholar
  8. Iversen, B. [1986]. Cohomology of sheaves. Universitext. Springer, 1986.Google Scholar
  9. Kleiman, S. [1976]. Rigorous foundations of Schubert enumerative calculus. Proc. Sympos. Pure Math. 28, Amer. Math. Soc. (1976), 445–482.MathSciNetCrossRefGoogle Scholar
  10. Kleiman, S. [1979]. Introduction to the reprint edition of Schubert [1879].Google Scholar
  11. Laumon, G. [1976]. Homologie étale. Astérisque 36–37 (1976), 163–188.MathSciNetzbMATHGoogle Scholar
  12. Le Barz, P. [1987]. Quelques calculs dans la variété des alignements. Advances in Math. 64 (1987), 87–117.CrossRefGoogle Scholar
  13. Rosselló, F. [1986]. Les groupes de Chow de quelques schémas qui paramétrisent des points coplanaires. CR Acad. Sc. Paris 303 (1986), 363–366.zbMATHGoogle Scholar
  14. Schubert, H. C. H. [1879]. Kalkül der abzahlenden Geometrie, Springer-Verlag (1979).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • F. Rosselló Llompart
    • 1
  • S. Xambó Descamps
    • 1
  1. 1.Dept Àlgebra i GeometriaFac. Mat., Univ. BarcelonaBarcelonaSpain

Personalised recommendations