Advertisement

Old and new results about the triangle varieties

  • Joel Roberts
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)

Keywords

Intersection Pairing Exceptional Divisor Homogeneous Element Divisor Class Free Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480–497.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B2]
    A. Bialynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Ser. Sci. Math. … 24 (1976) 667–674.MathSciNetzbMATHGoogle Scholar
  3. [CF]
    A. Collino and W. Fulton, On the space of plane triangles, to appear.Google Scholar
  4. [F]
    W. Fulton, Intersection Theory, Springer-Verlag, 1984.Google Scholar
  5. [HKS]
    B. Harbourne, S. Kleiman, and R. Speiser, work in progress.Google Scholar
  6. [K1]
    S. Kleiman, Multiple point formulas I: Iteration, Acta Math. 147 (1981) 13–49.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [K2]
    S. Kleiman, Intersection theory and enumerative geometry: a decade in review, Proc. Symp. Pure Math. (Bowdoin conference proceedings), to appear.Google Scholar
  8. [L]
    P. Le Barz, La variété des triplets complets, preprint, 1986.Google Scholar
  9. [RS1]
    J. Roberts and R. Speiser, Enumerative geometry of triangles, I, Comm. in Algebra 12 (1984) 1213–1255.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [RS2]
    J. Roberts and R. Speiser, Enumerative geometry of triangles, II, Comm. in Algebra 14 (1986) 155–191.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [RS3]
    J. Roberts and R. Speiser, Enumerative geometry of triangles, III, Comm. in Algebra, to appear.Google Scholar
  12. [Sch]
    H. Schubert, Anzahlgeometrische Behandlung des Dreiecks, Math. Ann. 17 (1880) 1213–1255.MathSciNetzbMATHGoogle Scholar
  13. [Se]
    J. Semple, The triangle as a geometric variable, Mathematika 1 (1954) 80–88.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Sp]
    R. Speiser, Enumerating contacts, Proc. Symp. Pure Math. (Bowdoin conference proceedings), to appear.Google Scholar
  15. [Ty]
    J. Tyrrell, On the enumerative geometry of triangles, Mathematika 6 (1959) 158–164.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Joel Roberts
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis

Personalised recommendations