Advertisement

Enumerative geometry of nodal plane cubics

  • Steven L. Kleiman
  • Robert Speiser
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)

Keywords

General Line Double Line Divisor Class Universal Family Open Subscheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BK]
    E. Brieskorn, H. Knörrer, Ebene algebraische Kurven, Birkhäuser (1981).Google Scholar
  2. [DH1]
    S. Diaz, J. Harris, Geometry of Severi varieties, preprint (1987).Google Scholar
  3. [DH2]
    S. Diaz, J. Harris, Geometry of Severi varieties, II, in this volume.Google Scholar
  4. [F]
    W. Fulton, Intersection theory, Ergebnisse (3. Folge) 2, Springer (1984).Google Scholar
  5. [FKM]
    W. Fulton, S. Kleiman and R. MacPherson, About the enumeration of contacts, in Algebraic geometry — open problems (C. Ciliberto, F. Ghione, F. Orecchia, eds.), Springer L. Notes 997 (1983) 156–196.Google Scholar
  6. [G]
    D. Grayson, Coincidnce formulas in algebraic geometry, Comm. in Alg. 7(16) (1979) 1685–1711.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [K]
    S. Kleiman, About the conormal scheme, Proc. of Arcireale Conf. 1983, Springer L. Notes.Google Scholar
  8. [K1]
    S. Kleiman, The enumerative theory of singularities of mappings, Proc. Oslo Symp. 1976 (P. Holm, ed.), Sijthoff and Noordhoff (1977) 297–396.Google Scholar
  9. [K2]
    S. Kleiman, Intersection theory and enumerative geometry, a decade in review (Section 3 written jointly with A. Thorup) Proc. of Bowdoin Symp. (1985), Amer. Math. Soc., to appear.Google Scholar
  10. [K3]
    S. Kleiman, Problem 15: rigorous foundation of Schubert's enumerative calculus, in Proc. of Symp. in pure Math. 28, Amer. Math. Soc. (1976) 445–482.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [K4]
    S. Kleiman, Chasles' enumerative theory of conics: a historical introduction, in Studies in Alg. Geom. (A. Seidenberg, ed.), Math. Assoc. of Amer. Studies in Math. 20 (1980) 117–118.Google Scholar
  12. [KS]
    S. Kleiman and R. Speiser, Enumerative geometry of cuspidal plane cubics, Vancouver Proc., Canad. Math. Soc. Conf. Proc. 6, Providence (1986).Google Scholar
  13. [KT]
    S. Kleiman and A. Thorup, Section 3 of [K2] above.Google Scholar
  14. [M]
    S. Maillard, Récherches des charactéristiques des systèmes élementaires de courbes planes du 3me ordre, Cusset, Paris (1871).Google Scholar
  15. [RS1]
    J. Roberts and R. Speiser, Enumerative geometry of triangles, I, Comm. in Algebra 12(10) (1984) 1213–1255.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [RS2]
    J. Roberts and R. Speiser, Enumerative geometry of triangles, II, Comm. in Algebra 14(1) (1986) 155–191.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Sa]
    Sacchiero, G., Numeri caratterisici delle cubiche piane nodale, preprint (1985).Google Scholar
  18. [Sch]
    H. Schubert, Kalkül der abzählenden Geometrie, Teubner (1879) repr. by Springer (1979).Google Scholar
  19. [XM1]
    S. Xambó Descamps and J.M. Miret, Fundamental numbers of cuspidal cubics, preprint, University of Barcelona (1987).Google Scholar
  20. [XM2]
    S. Xambó Descamps and J.M. Miret, work in progress on nodal cubics.Google Scholar
  21. [Z]
    H. Zeuthen, Detérmination des charactéristiques des systèmes élémentaires de cubiques, cubiques douées d'un point double, C.R. Acad. Sci. Paris 74 (1872) 604–607.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Steven L. Kleiman
    • 1
  • Robert Speiser
    • 2
  1. 1.Department of Mathematics, 2-278MITCambridgeUSA
  2. 2.Department of Mathematics, 292 TMCBBYUProvoUSA

Personalised recommendations