Iteration of multiple point formulas and applications to conics

  • Sheldon Katz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CMW]
    A. Collino, J. Murre, G. Welters. On the family of conics lying on a quartic threefold. Rend Sem. Mat. Univ. Pol. Torino 39 (1980) 151–181.MathSciNetzbMATHGoogle Scholar
  2. [F]
    W. Fulton. Intersection Theory. Springer-Verlag, Berlin 1984.CrossRefzbMATHGoogle Scholar
  3. [Kal]
    S. Katz. Degenerations of quintic threefolds and their lines. Duke Math. J. 50 (1983) 1127–1135.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Ka2]
    S. Katz. On the finiteness of rational curves on quintic threefolds. Comp. Math. 60 (1986) 151–162.MathSciNetzbMATHGoogle Scholar
  5. [Ka3]
    S. Katz. Lines on complete intersection threefolds with K = 0. Math. Z. 191 (1986) 293–296.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [K1]
    S. Kleiman. Multiple point formulas I: Iteration. Acta Math. 147 (1981) 13–49.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [L]
    P. Le Barz. Formules multisecantes pour les courbes gauches quelconques. Enumerative Geometry and Classical Algebraic Geometry, Birkhäuser, Boston 1982.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Sheldon Katz
    • 1
  1. 1.Department of MathematicsUniversity of OklahomaNorman

Personalised recommendations