Advertisement

On the embeddings of projective varieties

  • Audun Holme
  • Joel Roberts
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)

Keywords

Vector Bundle Hyperplane Section Divisor Class Abelian Surface Ample Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Alexander. Surfaces rationelles non-speciales dans P 4. Prepublications, Universite de Nice, 1986.Google Scholar
  2. [2]
    Alf Aure. Surfaces in P 4. PhD thesis, Department of Mathematics, University of Oslo, 1987.Google Scholar
  3. [3]
    Wolf Barth. Transplanting cohomology classes in complex projective spaces. American Journal of Mathematics, 92:951–970, 1970.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Magnar Dale. Terracini's lemma and the secant variety of a curve. Proceedings of the London mathematical Society, 49:329–339, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P.A. Griffiths E. Arbarello, M. Cornalba and J. Harris. Geometry of Algebraic Curves. Volume 276 of Grundlehren der mathematischen Wissenshaften, Springer-Verlag, Berlin, Heidelberg, New York, 1985.Google Scholar
  6. [6]
    Geir Ellingsrud and Christian Peskine. Sur les surfaces lisses dans P 4. Preprint, University of Oslo 1987.Google Scholar
  7. [7]
    T. Fujita and Joel Roberts. Varieties with small secant varieties: the extremal case. American Journal of Mathematics, 103:953–976, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Wiliam Fulton and Johan Hansen. A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings. Annals of Mathematics, 110:159–166, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Joe Harris. A bound on the geometric genus of projective varieties. Ann. Scoula Norm. Sup. Pisa, 8:35–68, 1981.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Robin Hartshorne. Algebraic Geometry. Graduate texts in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1977.CrossRefGoogle Scholar
  11. [11]
    Robin Hartshorne. Ample Subvarieties of Algebraic Varieties. Volume 156 of Springer Lecture Notes in Mathematics, Springer Verlag, Berlin, Heidelberg, New York, 1970.CrossRefzbMATHGoogle Scholar
  12. [12]
    Robin Hartshorne. On the classification of algebraic space curves. In Vector Bundles and Differential Equations, Université de Nice, 1979, Progress in Mathematics, Volume 7, Birkhäuser-Verlag, Boston, Basel, Stuttgart, 1979.Google Scholar
  13. [13]
    Audun Holme. Embedding obstruction for smooth, projective varieties I. In G. C. Rota, editor, Studies in Algebraic Topology, pages 39–67, Advances in Mathematics Supplementary Series, Volume 4. Addison-Wesley Publishing Company, 1979. Preprint from 1972, University of Bergen Preprint Series in Pure Mathematics.Google Scholar
  14. [14]
    Audun Holme and Joel Roberts. Pinch points and multiple locus for generic projections of singular varieties. Advances in Mathematics, 33:212–256, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Kent W. Johnson. Immersion and embedding of projective varieties. Acta Mathematica, 140:49–74, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Sheldon Katz. Hodge numbers of linked surfaces. Duke Mathematical Journal, 55:89–96, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Steven S. Kleiman. Towards a numerical theory for ampleness. Annals of Mathematics, 84:293–344, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Dan Laksov. Some enumerative properties of secants to non singular schemes. Mathematica Scandinavica, 39:171–190, 1976.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Antonio Lantieri. On the existence of scrolls in P 4. Rend. Accad. Lincei, 69:223–227, 1980.MathSciNetGoogle Scholar
  20. [20]
    A. Ogus. Local cohomological dimension of algebraic varieties. Annals of Mathematics, 98:327–365, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Christian Okonek. Flächen vom Grad 8 in P 4. Mathematica Gottingensis. Schriftenreihe des Sonderforschungsbereich Geometrie und Analysis., 1985. Heft Nr. 8.Google Scholar
  22. [22]
    Christian Okonek. Moduli reflexiver garben und flächen von kleinem grad. Mathematische Zeitshrift, 184:549–572, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Christian Okonek. On codimension-2 submanifolds in P 4 and P 5. University of California, Berkeley., 1986.zbMATHGoogle Scholar
  24. [24]
    Christian Okonek. Reflexive garben auf P 4. Mathematische Annalen, 260:211–237, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Christian Okonek, Über 2-codimensionale untermannigfaltigkeiten vom grad 7 in P 4 und P 5. Mathematische Zeitshrift, 187:209–219, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    I. R. Shafarevich. Algebraic Surfaces. Volume 75 of Proceedings of the Steklov Institute of Mathematics, 1965, American Mathematical Society, 1967. English translation.Google Scholar
  27. [27]
    Robert Speiser. Vanishing criteria and the Picard group for projective varieties of low codimension. Compositio Mathematica, 42:13–21, 1981.MathSciNetzbMATHGoogle Scholar
  28. [28]
    Jean-Claude Vignal. Embedding obstructions for Veronese embeddings. Master's thesis, Department of Mathematics, University of Bergen, 1976.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Audun Holme
    • 1
  • Joel Roberts
    • 2
  1. 1.University of BergenNorway
  2. 2.University of MinnesotaMinneapolis

Personalised recommendations