Advertisement

Iterated blow-ups and moduli for rational surfaces

  • Brian Harbourne
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1311)

Keywords

Modulus Space Exact Sequence Natural Transformation Finite Type Rational Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    M. Artin, Versal deformations and algebraic stacks. Invent. Math. 27(1974), 165–189.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [A2]
    M. Artin, Algebraic approximation of structures over complete local rings. Publ. Math. I.H.E.S. 36(1969), 23–58.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [DM]
    P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S. 36(1969), 75–110.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [EGA]
    J. Dieudonne and A. Grothendieck, Elements de Geometrie Algebrique: EGA III, Etude cohomologique des faisceaux coherents. Publ. Math. I.H.E.S. 11(1961) and 17 (1963); EGA IV, Etude locale des schemas et des morphismes de schemas. Ibid. 20(1964), 24(1965), 28(1966), 32(1967).Google Scholar
  5. [H1]
    B. Harbourne, Moduli of rational surfaces. M.I.T. Ph.D. thesis, 1982.Google Scholar
  6. [H2]
    B. Harbourne, Blowings-up of p2 and their blowings-down. Duke Math. J. 52(1985), 129–148.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Hs]
    R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics 49(1977), Berlin-Heidelberg-New York: Springer-Verlag.CrossRefzbMATHGoogle Scholar
  8. [K]
    S.L. Kleiman, Multiple-point formulas I: iteration. Acta. Math. 147(1981), 13–49.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Mat]
    H. Matsumura, Commutative Algebra. W.A. Benjamin Co., New York (1970).zbMATHGoogle Scholar
  10. [Mi]
    J.S. Milne, Etale Cohomology. Princeton Mathematical Series 33, Princeton University Press, Princeton, N.J. (1980).zbMATHGoogle Scholar
  11. [M1]
    D. Mumford, Picard groups of moduli problems. In: Arithmetic Algebraic Geometry, Harper and Row (1963).Google Scholar
  12. [M2]
    D. Mumford, Geometric Invariant Theory. Ergebnisse 34(1965). Heidelberg: Springer-Verlag, vi+146 pp.Google Scholar
  13. [N]
    M. Nagata, On rational surfaces II. Mem. Coll. Sci. Kyoto, (A) 33(1960), 271–293.MathSciNetzbMATHGoogle Scholar
  14. [R]
    D.S. Rim, Formal Deformation Theory, in Groupes de monodromie en geometrie algebrique expose 6. Lecture Notes in Mathematics 288(1972). Berlin-Heidelberg-New York: Springer.Google Scholar
  15. [RS]
    J. Roberts and R. Speiser, Enumerative geometry of triangles I, II, III. Comm. in Alg. 12(10)(1984), 1213–1255, 14(1986), 155–191, and to appear.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [S]
    R. Speiser, Enumerating contacts. Proceedings volume for 1985 AMS Summer Research Inst. in Algebraic Geometry held at Bowdoin College, to appear.Google Scholar
  17. [SB]
    A. Grothendieck, Seminaire Bourbaki: Les Theoremes d'existence en theorie formalle des modules, 195(1960); Les schemas de Hilbert, exp. 221(1960/61); Les schemas de Picard, exp. 232 et 236(1961/62).Google Scholar
  18. [Se]
    C.S. Seshadri, Theory of moduli. (In: Proceedings volume for 1974 Arcata AMS Summer Research Inst. in Algebraic Geometry) Proc. of Symp. in Pure Math. 29(1975), 263–304.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [W]
    J.M. Wahl, Equisingular deformations of normal surface singularities. Ann. of Math. 104(1976), 325–356.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Brian Harbourne
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of Nebraska-LincolnLincoln

Personalised recommendations