Advertisement

Sur certains complexes d'operateurs pseudodifferentiels

  • J. Sjostrand
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 660)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    BOUTET DE MONVEL, L. Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure appl. Math, 27(1974), 585–639.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    BOUTET DE MONVEL, L., SJOSTRAND, J. Sur la singularité des noyeaux de Bergman et de Szegö, Astérisque 34–35(1976), 123–164.MathSciNetMATHGoogle Scholar
  3. 3.
    HELFFER,B. Quelques exemples d'opérateurs pseudodifférentiels localement résolubles, Exposé à ce colloque.Google Scholar
  4. 4.
    HENKIN, G.M. Intégral representation of functions in a strictly pseudo convex domain and application to the \(\bar \partial \)-problem, Mat. Sb. 82(124)(1970), no2. Math. USSR Sb. 11(1970), no2, 273–281.MathSciNetCrossRefGoogle Scholar
  5. 5.
    KUCHERENKO,V.V. Parametrix for equations with degenerate symbol. Dokl, Akad., Nauk SSSR, 229(1976) no4, Sovj Math. Dokl. 17(1976) no4.Google Scholar
  6. 6.
    MELIN,A., SJOSTRAND,J. Fourier integral operators with complex phase functions, Springer Lecture Notes, 459, 120–223.Google Scholar
  7. 7.
    MELIN, A. SJOSTRAND, J. Fourier integral operators with complex phase and application to an interior boundary problem, Comm. in PDE, 1(4), (1976), 313–400.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    MENIKOFF,A., SJOSTRAND,J. The eigenvalues of hypcelliptic operators. Exposé à ce colloque.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • J. Sjostrand
    • 1
  1. 1.Université de Paris XI U.E.R. MathématiqueOrsay

Personalised recommendations