Countable or ω1-like models of Presburger's arithmetic

  • Victor Harnik
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1292)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Friedman, H., "Countable Models of Set Theories," Cambridge Summer School in Mathematical Logic, Springer-Verlag, Lecture Notes in Mathematics #337, 1971, pp. 539–573.Google Scholar
  2. [2]
    Friedman, H., "Some Systems of Second Order Arithmetic and Their Use," Proceedings of the International Congress of Mathematicians (Vancouver, 1974), Vol. 1, pp. 235–242.Google Scholar
  3. [3]
    Harnik, V., "ω1-like Recursively Saturated Models of Presburger's Arithmetic," The Journal of Symbolic Logic(1986),Vol. 51,pp. 421–429MathSciNetzbMATHGoogle Scholar
  4. [4]
    Lipshitz, L., and Nadel, M., "The Additive Structure of Models of Arithmetic," Proceedings the the AMS 68 (1978), pp. 331–336.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    MacDowell, R., and Specker, E., "Modelle der Arithmetik," Infinitistic Methods, Pergamon Press, London, 1961, pp. 257–263.Google Scholar
  6. [6]
    Nadel, M., "On a Problem of MacDowell and Specker," The Journal of Symbolic Logic 45 (1980), pp. 612–622.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Nadel, M., and Stavi, J., "On Models of the Elementary Theory of (Z, +, 1)"Google Scholar
  8. [8]
    Presburger, M., "Über die Vollstandigkeit eines gewissen System der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt," Comptes-rendu du I Congrès des Mathématiciens des Pays Slaves, Wassaw, 1930, pp. 92–101, 395.Google Scholar
  9. [9]
    D. Scott, "Algebras of Sets Binumerable in Complete Extensions of Arithmetic," Recursive Function Theory, Proc. Sympos. Pure Math., Vol. 5, AMS, 1962, pp. 117–121.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Smorynski, C., "Lectures on Nonstandard Models of Arithmetic," Logic Colloquium 82, ed. G. Lolli, G. Longo and A. Marcja, North-Holland, Amsterdam, 1984, pp. 1–70.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Victor Harnik
    • 1
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael

Personalised recommendations