Orthogonality of types in separably closed fields

  • Z. Chatzidakis
  • G. Cherlin
  • S. Shelah
  • G. Srour
  • C. Wood
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1292)


Distinct Sequence Independent Realization Stable Pair Transcendence Degree Accessible Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    E. Bouscaren, Dimensional order property and pairs of models (thèse d'état).Google Scholar
  2. [D]
    F. Delon, Idéaux et types sur le corps séparablement clos, preprint.Google Scholar
  3. [E]
    Y. Ersov, Fields with a solvable theory, Doklady 174 (1967), 19–20; English translation, Soviet Math 8 (1967) 575–576.MathSciNetGoogle Scholar
  4. [J]
    N. Jacobson, Lectures in abstract algebra III, Van Nostrand, 1964.Google Scholar
  5. [S]
    S. Shelah, Classification Theory, North Holland, 1978.Google Scholar
  6. [S2]
    S. Shelah, The Spectrum Problem I, Israel J. of Math. 43 (1982), 324–356.CrossRefzbMATHGoogle Scholar
  7. [Sr]
    G. Srour, The independence relation in separably closed fields, J. of Sympbolic Logic 51 (1986) 715–725.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Z. Chatzidakis
    • 1
  • G. Cherlin
    • 2
  • S. Shelah
    • 3
  • G. Srour
    • 4
  • C. Wood
    • 5
  1. 1.Dept. of MathPrinceton U.Princeton
  2. 2.Dept. of Math, Rutgers U.Hill Center, Busch CampusNew Brunswick
  3. 3.Math Inst.Jerusalem
  4. 4.Dept. of MathSimon Fraser U.Burnaby
  5. 5.Dept. of MathWesleyan U.Middletown

Personalised recommendations