Advertisement

Weakly compactly generated banach spaces

  • Joseph Diestel
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 485)

Keywords

Banach Space Linear Span Continuous Linear Operator Reflexive Banach Space Closed Unit Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. H. Corson, The weak topology of a Banach space, Trans. AMS, 101 (1961), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. H. Corson and J. Lindenstrauss, On simultaneous extension of continuous functions, Bull. AMS, 71 (1965), 542–545.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    On function spaces which are Lindelof spaces, Trans. AMS, 121 (1966), 476–491.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Continuous selections with non-metrizable range, Trans. AMS, 121 (1966), 492–504.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    On weakly compact subsets of Banach spaces, Proc. AMS, 17 (1966), 407–412.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W. J. Davis, T. Figiel, W. B. Johnson and A. Peiczynski, Factoring weakly compact operators, Journ. Fcnl. Anal.Google Scholar
  8. [8]
    J. Diestel, Grothendieck spaces and vector measures, Vector and Operator-Valued Measures and Applications, Academic Press, New York, 1973, 97–108.zbMATHGoogle Scholar
  9. [9]
    J. Diestel, LX1 is weakly compactly generated if X is, Proc. AMS, to appear.Google Scholar
  10. [10]
    J. Diestel and B. Faires, On vector measures, Trans. AMS, 198 (1974), 253–271.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Diestel and B. Faires, Remarks on the classical Banach operator ideals, Proc. AMS, to appear.Google Scholar
  12. [12]
    J. Diestel, B. Faires, and R. E. Huff, in preparation.Google Scholar
  13. [13]
    J. Diestel and J. J. Uhl, Jr., The Radon-Nikodým theorem for Banach space valued measures, Rocky Mtn. Jour., to appear.Google Scholar
  14. [14]
    B. Faires, On Vitali-Hahn-Saks type theorems, Bull. AMS, 80 (1974), 670–674.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Faires, Grothendeick spaces and vector measures, Ph.D. dissertation, Kent State University, August, 1974.Google Scholar
  16. [16]
    T. Figiel, Factorization of compact operators and applications to the approximation problems, Studia Math., 45 (1973), 191–210.MathSciNetzbMATHGoogle Scholar
  17. [17]
    D. Friedland, On closed subspaces of weakly compactly generated Banach spaces, Israel Journ. Math.Google Scholar
  18. [18]
    A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of Amer. Math. Soc., 16 (1955).Google Scholar
  19. [19]
    Resumé de le théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. Sao Paulo, 8 (1956), 1–79.MathSciNetzbMATHGoogle Scholar
  20. [20]
    R. C. James, On a conjecture about ℓ1, to appear.Google Scholar
  21. [21]
    K. John and V. Zizler, A renorming of dual spaces, Israel J. Math., 12 (1972), 331–336.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A note on renorming of dual spaces, Bull. Acad. Polon. Sci. 21 (1973), 47–50.MathSciNetzbMATHGoogle Scholar
  23. [23]
    Projections in dual weakly compactly generated Banach spaces, Studia Math., 49 (1974), 41–50.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Smoothness and its equivalents in weakly compactly generated Banach spaces, Jour. Fcnl. Anal., 15 (1974), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    W. B. Johnson, Factoring compact operators, Israel J. Math., 9 (1971), 337–345.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated spaces, Israel J. Math., 17 (1974), 219–230.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    T. Kuo, Grothendieck spaces and dual spaces possessing the Radon-Nikodým property. Ph.D. thesis (Carnegie-Mellon University), 1974.Google Scholar
  28. [28]
    D. R. Lewis, Conditional weak compactness in certain injective tensor products., Math. Annalen, 20 (1973), 201–210.CrossRefzbMATHGoogle Scholar
  29. [29]
    J. Lindenstrauss, On operators which attain their norm, Israel J. Math., 1 (1963), 139–148.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    On reflexive spaces having the metric approximation property, Israel J. Math., 3 (1965), 199–204.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    On nonseparable reflexive Banach spaces, Bull. AMS., 72 (1966), 967–970.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    Weakly compact sets-their topological properties and the Banach spaces they generate, Ann. of Math. Studies, 69 (1972), 235–273.MathSciNetzbMATHGoogle Scholar
  33. [33]
    J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain ℓ1 and whose duals are non-separable, to appear.Google Scholar
  34. [34]
    A. Pietsch, Theorie der Opera torenideale, Friedrich-Schiller-Universitat, Jena, 1972.Google Scholar
  35. [35]
    H. P. Rosenthal, The hereditary problem for weakly compactly generated Banach spaces, Colloq. Math.Google Scholar
  36. [36]
    S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math., 37 (1971), 173–180.MathSciNetzbMATHGoogle Scholar
  37. [37]
    On equivalent norms and minimal systems in nonseparable Banach spaces, Studia Math., 43 (1972), 125–138.MathSciNetGoogle Scholar
  38. [38]
    J. J. Uhl, Jr., Norm attaining operators on L1[0, 1] and the Radon-Nikodým property, to appear.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Joseph Diestel

There are no affiliations available

Personalised recommendations