Advertisement

Convexity and differentiability of norms

  • Joseph Diestel
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 485)

Keywords

Banach Space Convex Subset Orlicz Space Convex Space Normed Linear Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Banach, Theorie des operations lineaires, Monografje Matematyczne, Vol. 1, Warzawa, 1932.Google Scholar
  2. [2]
    L. P. Belluce and W. A. Kirk, Fixed-point theorems for families of contraction mappings, Pac. J. Math., 18 (1966), 213–217.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    -, Non-expansive mappings and fixed points in Banach spaces, Ill. J. Math., 11 (1967), 474–479.MathSciNetzbMATHGoogle Scholar
  4. [4]
    L. P. Belluce, W. A. Kirk, and E. F. Steiner, Normal structure in Banach spaces, Pac. J. Math., 26 (1968), 433–440.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk (SSSR), 59 (1948), 837–840.MathSciNetGoogle Scholar
  7. [7]
    F. E. Browder, Fixed point theorems for non-compact mappings in Hilbert space, Proc. Nat. Acad. Sci. (USA), 53 (1965), 1272–1276.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    -, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. (USA), 54 (1965), 1041–1044.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. O. Carlsson, Orthogonality in normed linear spaces, Ark. f. Mat., 4 (1961), 297–318.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. A. Clarkson, Uniformly convex spaces, Trans. AMS, 40 (1936), 396–414.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. F. Cudia, Rotundity, Proc. Sympos. Pure Math. 7 (1963), AMS Providence, RI, pp. 73–97.zbMATHGoogle Scholar
  12. [12]
    -, The geometry of Banach spaces, Smoothness. Trans. AMS, 110 (1964), 284–314.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. AMS, 47 (1941), 313–317.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    -, Some more uniformly convex spaces, Bull. AMS, 47 (1941), 504–507.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    -, Uniform convexity, III. Bull. AMS, 49 (1943), 745–750.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    -, Uniform convexity in factor and conjugate spaces, Ann. of Math. (2), 45 (1944), 374–385.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    -, Strict convexity and smoothness of normed spaces, Trans. AMS, 78 (1955), 516–528.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    -, Every L-space is isomorphic to a strictly convex space, Proc. AMS, 8 (1957), 415–417.MathSciNetzbMATHGoogle Scholar
  19. [19]
    M. M. Day, R. C. James, and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math., 23 (1971), 1051–1059.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. DeMarr, Common fixed points for commuting contraction mappings, Pac. J. Math., 13 (1963), 1139–1141.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253–271.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. Dixmier, Sur un théorème de Banach, Duke Math. Jour., 15 (1948), 1057–1071.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Edelstein, A theorem on fixed points under isometries, Amer. Math. Monthly, 70 (1963), 298–300.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    -, On nonexpansive mappings of Banach spaces, Proc. Cambridge Phil. Soc., 60 (1964), 439–447.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    K. Fan and I. Glicksberg, Some geometrical properties of the spheres in a normed linear space, Duke Math. Jour., 25 (1958), 553–568.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. France, 69 (1941), 23–46.MathSciNetzbMATHGoogle Scholar
  27. [27]
    A. L. Garkavi, The best possible net and the best possible cross-section of a set in a normed linear space, Izv. Akad. Nauk. SSSR, Ser. Mat., 26 (1962), 87–106; Amer. Math. Soc. Translations, Ser. 2, 39 (1964), 111–132.MathSciNetGoogle Scholar
  28. [28]
    J. R. Giles, Classes of semi-inner-product spaces, Trans. AMS, 129 (1967), 436–446.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    -, On a characterization of differentiability of the norm of a normed linear space, Jour. Aust. Math. Soc., 12 (1971), 106–114.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    V. I. Gurarii and N. I. Gurarii, Bases in uniformly convex and uniformly flattened Banach spaces, Math. USSR Izvestija, 5 (1971), 220–225.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. R. Holub, On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201 (1973), 157–163.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. C. James, Orthogonality in normed linear spaces, Duke Math. Jour., 12 (1945), 291–302.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    R. C. James, Bases and reflexivity of Banach spaces, Ann. Math., 52 (1950), 518–527.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Karlin, Bases in Banach spaces, Duke Math. J., 15 (1948), 971–985.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004–1006.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    V. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc., 74 (1953), 10–43.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    -, Some new results on smoothness and rotundity in normed linear spaces, Math. Annalen, 139 (1959), 51–63.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    -, Mappings into normed linear spaces, Fund. Math., 49 (1960), 25–34.MathSciNetzbMATHGoogle Scholar
  39. [39]
    G. Köthe, Topological Vector Spaces. Berlin: Springer-Verlag, 1969.zbMATHGoogle Scholar
  40. [40]
    E. Leonard and K. Sundaresan, Smoothness in Lebesgue-Bochner function spaces and the Radon-Nikodým theorem, to appear.Google Scholar
  41. [41]
    J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 3 (1963), 139–148.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    -, Weakly compact sets, their topological properties and Banach spaces they generate, Proc. Symp. Infinite Dimensional Topology, 1967, Ann. of Math Studies, 69 (1972), 235–273.MathSciNetGoogle Scholar
  43. [43]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Springer-Verlag Lecture Note Series, 338 (1973), Berlin-Heidelberg-New York.Google Scholar
  44. [44]
    A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans. AMS, 78 (1955), 225–238.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Mazur, Uber knovexe Mengen in linearen normierten Raumen, Studia Math., 4 (1933), 70–84.zbMATHGoogle Scholar
  46. [46]
    D. P. Milman, On some criteria for the regularity of spaces of the type (B), Dokl. Akad. Nauk SSSR, 20 (1938), 243–246.zbMATHGoogle Scholar
  47. [47]
    Z. Opial, Nonexpansive and monotone mappings in Banach spaces, Lecture notes from January, 1967 lectures given at Center for Dynamical Systems at brown University.Google Scholar
  48. [48]
    B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. Jour., 5 (1939), 249–253.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M. M. Rao, Smoothness in Orlicz spaces I, II. Proc. Amsterdam Acad. Sci., 28 (1965), 671–690.zbMATHGoogle Scholar
  50. [50]
    A. F. Ruston, A note on convexity of Banach spaces, Proc. Cambridge Philos. Soc., 45 (1949), 157–159.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    I. Singer, personal communication.Google Scholar
  52. [52]
    V. L. Šmulyan, On some geometrical properties of the unit sphere in the space of the type (B). (Russian). Mat. Sbornik, 6 (1939), 77–94.MathSciNetGoogle Scholar
  53. [53]
    -, Sur la derivabilité de la norme dans l'espace de Banach, Doklady (CR Aad. Sci. URSS), 27 (1940), 643–648.zbMATHGoogle Scholar
  54. [54]
    V. L. Šmulyan, Sur la structure de la sphere unitaire dans l'espace de Banach, Math. Sbornik, 9 (51) (1941), 545–561.MathSciNetGoogle Scholar
  55. [55]
    K. Sundaresan, Orlicz spaces isomorphic to strictly convex spaces, Proc. AMS, 17 (1966), 1353–1356.MathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    K. Yosida, Functional Analysis. Springer-Verlag, Berlin-Heidelberg-New York, 1960.zbMATHGoogle Scholar
  57. [57]
    V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math., 87 (1971), 5–33.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Joseph Diestel

There are no affiliations available

Personalised recommendations