Advertisement

Robust statistical procedures: A general approach

  • R. Zieliński
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 982)

Keywords

Decision Rule Robust Statistic Invariant Problem Criterion Robustness Robustness Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartoszewicz J. On the most bias-robust linear estimates of the scale parameter of exponentical distribution.-Applicationes Mathematicae, vol.18 (to appear.).Google Scholar
  2. 2.
    Berger J.O. Statistical decision theory. Foundations, concepts and methods. Springer-Verlag, 1980.Google Scholar
  3. 3.
    Bickel P.J. Another look at robustness: a review of reviews and some new developments.-Scand.J.Statist. 1976, v.3, p.145–168.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Box G.E.P., Andersen S.L. Permutation theory in the derivation of robust criteria and the study of departures from assumptions.-J.Roy.Statist.Soc., Ser., 1955, v.17, p.1–34.zbMATHGoogle Scholar
  5. 5.
    Box G.E.P., Tiao G.C. Bayesian inference in statistical analysis. Addision-Wesley Publishing Company, 1973.Google Scholar
  6. 6.
    Hampel F.R. A general qualitative definition of robustness.-Ann. Math.Statist., 1971, v.42, p.1887–1896.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hampel F.R. The influence curve and its role in estimation.-J.Amer.Statist.Assoc., 1974, v.62, p.1179–1186.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Huber P.J. Robust estimation of a location parameter.-Ann. Math.Statist., 1964, v.35, p.73–101.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huber P.J. Robust statistics: a review.-Ann.Math.Statist., 1972, v.43, p.1041–1067.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huber P.J. Robust statistics. New York-Chichester-Brisbane-Toronto: John Wiley and Sons, 1981.CrossRefzbMATHGoogle Scholar
  11. 11.
    Pollock K.H. Inference robustness vs. oriterion robustness: an example.-The American Statistican, 1978, vol.32, November.Google Scholar
  12. 12.
    Rey W.J.J. Robust statistical methods.-Lect.Notes Math., 1978, v.690.Google Scholar
  13. 13.
    Zieliński R. Robustness: a quantitative approach. Bull. l’Acad. Polonaise de Science. Serie des sciences math., astr., et phys., 1977, v.XXV, No 12, p.1281–1286.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zieliński R. A most bias — robust linear estimate of the scale parameter of exponential distribution.-Inst.Math.Polish Acad. Sci., 1980, Preprint No 205 (to appear in "Applicationes Mathematicae", vol.18).Google Scholar
  15. 15.
    Zielinski R., Zielinski W. On robust estimation in the simplest exponential model.-Inst.Polish Acad.Sci., Preprint. No 242, 1981.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Zieliński
    • 1
  1. 1.WarsawPoland

Personalised recommendations