Advertisement

Several remarks on applications of one approach to studies of characterization problems of Polya’s theorem type

  • I. Šiganov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 982)

Keywords

Central Limit Theorem Independent Random Variable Theorem Type Stable Distribution Separable Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Šiganov I.S. Metric approach to the stability investigation of the Polya theorem on a characterization of the normal distribution.-In: Problemy ustoičivosti stohastičeskih modelei. M.: VNIISI, 1981, p.145–154 (in Russian).Google Scholar
  2. 2.
    Prohorov Ju.V., Fiš M. A characteristic property of the normal distributio in Hilbert space.-Teorija verojatn. i ee primen., 1957, v.2, N 4, p.475–477 (in Russian).Google Scholar
  3. 3.
    Zolotarev V.M. On the structure of ideal metrics.-In: Problemy ustoičivosti stohastičeskih modelei. M.: VNIISI, 1981, p.30–39 (in Russian).Google Scholar
  4. 4.
    Zolotarev V.M., Metric distances in spaces of random variables and their distributions.-Matem. Sb., 1976, v.101, N 3, p.416–454 (in Russian).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zolotarev V.M. On pseudomoments.-Teorija verojatn. i ee primen., 1978, v.23, N 2, p.284–294 (in Russian).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Zolotarev V.M. Ideal metrics in the problem of approximation of distributions of sums of independent random variables.-Teorija verojatn. i ee primen., 1977, v.22, N 3, p.449–469 (in Russian).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Jurinskii V.V. The smoothing inequality for estimating the Levy — Prohorov distance.-Teorija verojatn. i ee primen., 1975, v.20, N 1, p.3–12 (in Russian).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Petrov V.V. Sums of independent random variables. M.: Nauka, 1972 (in Russian).zbMATHGoogle Scholar
  9. 9.
    Zinger A.A. Yanushkevichius R.V. The stability of one characterizational theorem of Ju.V.Linnik.-In: Problemy ustoičivosti stohastičeskih modelei. M.: VNIISI, 1981, p.24–30 (in Russian).Google Scholar
  10. 10.
    Šiganov I.S. Some estimates dealing with the stability of H.Cramer’s theorem.-Zapiski naučn. semin. LOMI, 1979, v.87, p.187–195 (in Russian).Google Scholar
  11. 11.
    Zolotarev V.M. General problems of the stability of mathematical models.-Bull. Int. Statist. Inst., 1977, v.47, N 2, p.382–401.MathSciNetGoogle Scholar
  12. 12.
    Zolotarev V.M., Ideal metrics in the problems of the probability theory and mathematical statistics.-Austral J.Statist., 1979, v.21, N 3, p.193–208.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Stoyan D. Uber einige Eigenschaften monotoner stochastischer Processe.-Math. Nachr., 1972, B.52, S.21–34.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stoyan D. Ein Stetiskeitssatz fur einlinige Wartesysteme der Bedeinungstheorie.-Math. Operationsforsch. Statist. Ser.Statist., 1972, B.3, S.103–111.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gnedenko B. Sur la distribution limite du terme maximim d’une serie aleatoire.-Ann.Math., 1943, v.44, p.423–453.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shimizu R. On the stability of characterizations of the exponential distribution.-Inst. Statist.Math., Research Memorandum N 195, 1980, p.1–13.CrossRefzbMATHGoogle Scholar
  17. 17.
    Shimizu R. Functional equation with an error term and the stability of some characterizations of the exponential distribution.-Ann.Inst. Statist.Math., 1980, N 32, p.1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shimizu R., Davies L. On the stability of characterization of non-normal stable distribution. — In: Proceedings of the International Summer School on Statistical Distributions in Scientific Work. Trieste, 1980.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • I. Šiganov
    • 1
  1. 1.MoscowRussia

Personalised recommendations