Advertisement

An elementary characterization of the multinomial and the multivariate hypergeometric distributions

  • J. Panaretos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 982)

Keywords

Poisson Distribution Conditional Distribution Multinomial Distribution Hypergeometric Distribution Integer Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bol’shev L.N. On a Characterization of the Poisson Distribution and its Statistical Applications.-Theory Probab.App., 1965. v.10, No 2, p.446–456.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gerber H.U. A Characteristic Property of the Poisson Distribution.-Amer. Statist, 1979, v.33, p.85–86.MathSciNetGoogle Scholar
  3. 3.
    Gerber H.U. A Characterization of Certain Families of Distributions via Esscher Transforms and Independence.-J.Amer. Statist. Assoc., 1980, v.75, p.1015–1018.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Janardan K.G. A Characterization of Multinomial and Negative Multinomial Distributions.-Scand. Actuar. J., 1974, v.57, p.58–62.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Panaretos J. On the Joint Distribution of Two Discrete Random Variables.-Annals of the Institute of Statistical Mathematics, A (Theory and Methods), 1981, v.33(2), p.191–198.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Patil G.P., Seshadri V. Characterization Theorems for Some Univariate Probability Distributions.-J.Roy. Statist. Soc. Ser.B, 1964, v.26, p.286–292.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Rao C.R., Srivastava R.C. Some Characterizations Based on Multivariate Splitting Model.-Sankhya A, 1979, v.41, p.124–128.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Shanbhag D.N., Basawa I.V. On a characterization property of the Multinomial Distribution.-Trabajos Estadist. Investigation Oper, 1974, v.25, p.109–112.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Panaretos
    • 1
  1. 1.ColumbiaUSA

Personalised recommendations