Advertisement

Eigenvalues of matrices of complex representations of finite groups of lie type

  • A. E. Zalesskii
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.R. Berger, Hall-Higman type theorems, IV. Proc. Amer. Math. Soc. 37 (1973), 317–325.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H.F. Blichfeldt, Finite collineation groups, Univ. Chicago Press, Chicago, 1917.Google Scholar
  3. 3.
    C.W. Curtis, W.M. Kantor and G.M. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1–59.MathSciNetzbMATHGoogle Scholar
  4. 4.
    W. Feit and J. Tits, Projective representations of minimum degree of group extensions, Can. J. Math. 30 (1978), 1092–1102.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    W. Feit and J. Thompson, Finite groups which have a faithful representation of degree less than (p-1)/2, Pacific J. Math. 11 (1961), 1257–1262.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ph. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. 6 (1956), 1–42.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ch. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, J. Algebra 93 (1985), 151–164.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C.Y. Ho, On quadratic pairs, J. Algebra 43 (1976), 338–358.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Landazuri and G. Seitz, On the minimal degree of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418–443.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A.A. Premet, The weights of irreducible rational representations of semisimple algebraic groups over a field of prime characteristic (in Russian), Mat. Sb. 133 (175) (1987), 167–183. (English. translation: Math. USSR, Sb.).Google Scholar
  11. 11.
    G.M. Seitz, Some representations of classical groups, J. London Math. Soc. 10 (1975), 115–120.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Shult, On groups admitting fixed point free abelian operator groups, Illinois J. Math. 9 (1965), 701–720.MathSciNetzbMATHGoogle Scholar
  13. 13.
    R. Steinberg, Lectures on Chevalley groups, mimeographed lecture notes, Yale Univ. Math. Dept. (1968).Google Scholar
  14. 14.
    R. Steinberg, Representations of algebraic groups, Nagoya J. Math. 22 (1963), 33–56.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D.A. Suprunenko, Soluble and nilpotent linear groups (in Russian), Minsk, 1958. (English translation: Amer. Math. Soc., Providence, R.I., 1963.)Google Scholar
  16. 16.
    J. Thompson, Quadratic pairs, Proc. Intern. Congr. Math. (Nice, 1970), Vol. 1, Gauthier-Villars, Paris (1971), 375–376.zbMATHGoogle Scholar
  17. 17.
    F.D. Veldcamp, Representations of algebraic groups of type F4 in characteristic 2, J. Algebra 16 (1970), 326–339.MathSciNetCrossRefGoogle Scholar
  18. 18.
    H.N. Ward, Representations of symplectic groups, J. Algebra 20 (1972), 182–195.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A.E. Zalesskii, Normalizer of an extraspecial linear group (in Russian), Vestsi Akad. Navuk BSSR, Ser. fiz.-mat. navuk, 6 (1985), 11–16.MathSciNetGoogle Scholar
  20. 20.
    A.E. Zalesskii, Spectra of elements of order p in complex representations of finite Chevalley groups of characteristic p (in Russian) Vestsi Akad. Navuk BSSR, Ser. fiz.-mat. navuk, 6, (1986), 20–25.MathSciNetGoogle Scholar
  21. 21.
    A.E. Zalesskii, Fixed points of elements of order p in complex representations of finite Chevalley groups of characteristic p (in Russian), Dokl. Akad. Nauk BSSR, 31 (1987), 104–107.MathSciNetGoogle Scholar
  22. 22.
    A.E. Zalesskii, Eigenvalue 1 of matrices of complex representations of finite Chevalley groups, (in Russian), Trudy Mat. Inst. AN SSSR, 187 (1988) (to appear) (English translation: Proc. Steklov Inst. Math.).Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. E. Zalesskii
    • 1
  1. 1.Institute of Mathematics of the Academy of Sciences of Byelorussian SSRMinskUSSR

Personalised recommendations