Advertisement

Homology of free loop spaces, cyclic homology and non-rational poincare-betti series in commutative algebra

  • Jan-Erik Roos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)

Keywords

Spectral Sequence Local Ring Elliptic Genus Cyclic Homology London Mathematical Society Lecture Note 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    D. ANICK, Construction d'espaces de lacets et anneaux locaux à séries de Poincaré-Betti non rationnelles, Comptes Rendus Acad. Sc. Paris, 290, série A, p. 729–732. 1980 (Cf. also D. ANICK, A counterexample to a conjecture of Serre, Ann.Math., 115, 1982, p. 1–33. Correction: Ann.Math., 116, 1983, 661.)Google Scholar
  2. [2]
    D. ANICK, The smallest ω-irrational CW-complex, J. Pure Appl. Algebra, 28, 1983, p. 213–222.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. ANICK, A model of Adams-Hilton type for fiber squares, Ill. J. Math., 29, 1985, p. 463–502.MathSciNetzbMATHGoogle Scholar
  4. [4]
    D. ANICK-T.H. GULLIKSEN, Rational dependence among Hilbert and Poincaré series, J. Pure Appl. Algebra, 38, 1985, p. 135–157.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L.L. AVRAMOV, Golod homomorphisms, Lecture Notes in Mathematics, 1183, 1986, p. 59–78, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.zbMATHGoogle Scholar
  6. [6]
    L.L. AVRAMOV, A.R. KUSTIN, M. MILLER, Poincaré series of modules over local rings of small embedding codepth or small linking number, preprint 1986, to appear in J. Algebra.Google Scholar
  7. [7]
    J. BACKELIN-J.-E. ROOS, When is the double Yoneda Ext-algebra of a local noetherian ring again noetherian?, Lecture Notes in Mathematics, 1183, 1986, p. 101–119, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.zbMATHGoogle Scholar
  8. [8]
    R. BOTT-L.W. TU, Differential forms in algebraic topology, Graduate Texts in Mathematics, no 82, Springer-Verlag, Berlin, Heidelberg, New York, 1982.zbMATHGoogle Scholar
  9. [9]
    D. BURGHELEA, Cyclic homology and the algebraic K-theory of spaces I, Contemporary Mathematics, 55, 1986, p. 89–115. American Mathematical Society.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    D. BURGHELEA-Z. FIEDOROWICZ, Cyclic homology and the algebraic K-theory of spaces II, Toplogy, 25, 1987, p. 303–317.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G.E. CARLSSON-R.L. COHEN, The cyclic groups and the free loop space, Comment. Math. Helv., 62, 1987, p. 423–449.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G.E. CARLSSON, R.L. COHEN, T. GOODWILLIE, W.C. HSIANG, The free loop space and the algebraic K-theory of spaces, K-theory, 1, 1987, 53–82.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. CARTAN-S. EILENBERG, Homological algebra, Princeton University Press, Princeton, 1956.zbMATHGoogle Scholar
  14. [14]
    R. L. COHEN, A model for the free loop space of a suspension, Lecture Notes in Mathematics, 1286, 1987, p. 193–207, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  15. [15]
    R. L. COHEN, Pseudo-isotopies, K-theory and homotopy theory, London Mathematical Society Lecture Notes Series, 117, 1987, p. 35–71, Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  16. [16]
    Y. FELIX-J.C. THOMAS, Sur l'opération d'holonomie rationnelle, Lecture Notes in Mathematics, 1183, 1986, p. 136–169, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.zbMATHGoogle Scholar
  17. [17]
    R. FRÖBERG, Determination of a class of Poincaré series, Math. Scand., 37, 1975, p. 29–39.MathSciNetzbMATHGoogle Scholar
  18. [18]
    T.G. GOODWILLIE, Cyclic homology, derivations and the free loop space, Topology, 24, 1985, p. 187–215.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T.G. GOODWILLIE, On the general linear group and Hochschild homology, Ann. Math., 121, 1985, p. 383–407. Corrections: Ann. Math., 124, 1986, p. 627–628.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    T.G. GOODWILLIE, Relative algebraic K-theory and cyclic homology, Ann. Math., 124, 1986, p. 247–402.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. GROMOLL-W. MEYER, Periodic geodesics on compact Riemannian manifolds, J. Differential Geometry, 3, 1969, p. 493–510.MathSciNetzbMATHGoogle Scholar
  22. [22]
    A. GROTHENDIECK, Sur la théorie des classes de Chern, Bull. Soc. Math. France, 86, 1958, p. 137–154.MathSciNetzbMATHGoogle Scholar
  23. [23]
    T.H. GULLIKSEN, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand., 34, 1974, p. 167–183.MathSciNetzbMATHGoogle Scholar
  24. [24]
    T.H. GULLIKSEN, A note on intersection multiplicities, Lecture Notes in Mathematics, 1183, 1986, p. 192–194, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.zbMATHGoogle Scholar
  25. [25]
    T.H. GULLIKSEN, Homology of modules of length 2 (to appear).Google Scholar
  26. [26]
    P. HANLON, Cyclic homology and the Macdonald conjectures, Invent. Math., 86, 1986, p. 131–159.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    C. KASSEL, A Künneth formula for the cyclic cohomology of Z/2-graded algebras, Math. Ann., 275, 1986, p. 683–699.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    P. KLEIN, Über die Kohomologie des freien Schleifenraums, Bonner Mathematische Schriften, Nr 55, 1972, Bonn.Google Scholar
  29. [29]
    C. LECH, A note on recurring series, Arkiv f. Matematik, 2, 1953, p. 417–421.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J.-M. LEMAIRE, Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Mathematics, 422, 1974, Springer-Verlag, Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  31. [31]
    G. LEVIN, Local rings and Golod homomorphisms, J. Algebra, 37, 1975, p. 266–289.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J.-L. LODAY-D. QUILLEN, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv., 59, 1984, p. 565–591.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. LÖFWALL-J.-E. ROOS, Cohomologie des algèbres de Lie graduées et séries de Poincaré-Betti non rationnelles, Comptes rendus Acad. Sc. Paris, 290, série A, 1980, p. 733–736.Google Scholar
  34. [34]
    C. LÖFWALL, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Thesis, Stockholm University, 1976, and Lecture Notes in Mathematics, 1183, 1986, p. 291–338, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  35. [35]
    S. Mac LANE, Homologie des anneaux et des modules, Colloque de Topologie algébrique, tenu à Louvain les 11,12 et 13 juin 1956, p.55–80, Centre Belge de Recherches Mathématiques, Thone, Liège and Masson & Cie, Paris, 1957.Google Scholar
  36. [36]
    S. Mac LANE, Homology, Die Grundlehren der Math. Wiss., Band 114, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.CrossRefzbMATHGoogle Scholar
  37. [37]
    K. MAHLER, On the Taylor coefficients of rational functions, Proc. Cambridge Phil. Soc., 52, 1956, p. 39–48. Addendum: Proc. Cambr.Ph.Soc. 53, 1957, p. 544. (Cf. also K. MAHLER, Proc. Nederl. Akad. Sci., 38, 1935, p. 50–60).MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    T. MASUDA-T. NATSUME, Cyclic cohomology of certain affine schemes, Publ. RIMS, Kyoto University, 21, 1985, p. 1261–1279.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. McCLEARY, Closed geodesics on Stiefel manifolds, Lecture Notes in Mathematics, 1172, 1985, p. 157–162, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  40. [40]
    J.-E. ROOS, Relations between the Poincaré-Betti series of loop spaces and of local rings, Lecture Notes in Mathematics, 740, 1979, p. 285–322, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  41. [41]
    J.-E. ROOS, On the use of graded Lie algebras in the theory of local rings, London Mathematical Society Lecture Notes Series, 72, 1982, p. 204–230, Cambridge University Press, Cambridge.Google Scholar
  42. [42]
    J.-E. ROOS, A mathematical introduction, Lecture Notes in Mathematics, 1183, 1986, p. III–VIII, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.Google Scholar
  43. [43]
    J.-P. SERRE, Homologie singulière des espaces fibrés. Applications, Ann. Math., 54, 1951, p. 425–505.CrossRefzbMATHGoogle Scholar
  44. [44]
    J.-P. SERRE, Algèbre locale. Multiplicités (rédigé avec la collaboration de P. GABRIEL), Lecture Notes in Mathematics, 11, 3e édition, 1975, Springer-Verlag, Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  45. [45]
    J.-P. SERRE, Un exemple de série de Poincaré non rationnelle, Proc. Nederland. Acad. Sci., 82, 1979, p. 469–471 [= Indag. Math. 41, 1979, p. 469–471].zbMATHGoogle Scholar
  46. [46]
    Th. SKOLEM, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen, Comptes rendus 8éme Congrès Scandinave à Stockholm 1934, Lund, 1935, p. 163–188.Google Scholar
  47. [47]
    U. SHUKLA, Cohomologie des algèbres associatives, Ann. Sci. Ecole Norm. Sup., 78, 1961, p. 163–209.MathSciNetzbMATHGoogle Scholar
  48. [48]
    L. SMITH, On the characteristic zero cohomology of the free loop space, Amer. J. Math., 103, 1981, p. 887–910.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    L. SMITH, The Eilenberg-Moore spectral sequence and the mod 2 cohomology of certain free loop spaces, Ill. J. Math., 28, 1984, 516–522.MathSciNetzbMATHGoogle Scholar
  50. [50]
    R.E. STAFFELDT, Rational algebraic K-theory of certain truncated polynomial rings, Proc. Amer. Math. Soc., 95, 1985, p. 191–198.MathSciNetzbMATHGoogle Scholar
  51. [51]
    R.P. STANLEY, Enumerative Combinatorics, volume I, Wadsworth & Brooks/Cole, Advanced Books & Software, Monterey, Calif., 1986.Google Scholar
  52. [52]
    A.S. ŠVARTS, Gomologii prostranstv zamknutich krivich, Trudy Moskovsk. Mat. Obščestva, 9, 1960, p. 3–44.Google Scholar
  53. [53]
    C.H. TAUBES, S1-actions and elliptic genera, preprint, Harvard University 1986–87.Google Scholar
  54. [54]
    M. VIGUÉ-POIRRIER and D. SULLIVAN, The homology theory of the closed geodesic problem, J. Differential Geometry, 11, 1976, p. 633–644.MathSciNetzbMATHGoogle Scholar
  55. [55]
    M. VIGUÉ-POIRRIER, Homotopie rationnelle et croissance du nombre de géodésiques fermées, Ann. Scient. Ec. Normale Sup., 4e série, 17, 1984, p. 413–431.zbMATHGoogle Scholar
  56. [56]
    M. VIGUÉ-POIRRIER and D. BURGHELEA, A model for cyclic homology and algebraic K-theory of 1-connected topological spaces, J. Differential Geometry, 22, 1985, p. 243–253.MathSciNetzbMATHGoogle Scholar
  57. [57]
    J. WEYMAN, On the structure of free resolutions of length 3. Preprint 1985 (to appear).Google Scholar
  58. [58]
    E. WITTEN, The index of the Dirac operator in loop space, to appear in the Proceedings of the Conference on Elliptic Curves and Modular Forms in algebraic topology (Princeton 1986) in Springer Lecture Notes. Cf. also Colloquium Lectures given by E. WITTEN at the 836th meeting of the American Mathematical Society in Salt Lake City, Utah, August 5–8, 1987.Google Scholar
  59. [59]
    E. WITTEN, Elliptic genera and quantum field theory, Communications in Math. Physics, 109, 1987, p. 525-MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    W. ZILLER, The free loop space of globally symmetric spaces, Inv. Math., 41, 1977, p. 1–22.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jan-Erik Roos
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations