On the codimensions of matrix algebras

  • Amital Regev
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amitsur, S.A., Regev, A.: PI-algebras and their cocharacters. J. of Algebra, Vol. 78, No. 1, (1982) 248–254.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Beckner, W., Regev, A.: Asymptotics and algebraicity of some generating functions. Advances in Math. Vol. 65 No. 1 (1987), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Berele, A.: Cocharacters of Z/2Z graded algebras. Preprint.Google Scholar
  4. [4]
    Berele, A., Regev, A.: Hook Young diagrams with applications to Combinatorics and to representations of Lie superalgebras. Advances in Math., Vol. 64, No. 2, (1987), 118–175.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Berele, A., Regev, A.: Applications of hook Young diaagrams to P.I. algebras. J. of Algebra, 82(1983) 559–567.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Formanek, E.: Invariants of the ring of generic matrices. J. of Algebra 89(1984), 178–223.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Formanek, E.: A conjecture of Regev on the Capelli polynomial. To appear in J. of Algebra.Google Scholar
  8. [8]
    Formanek, E.: The invariants of n×n matrices. To appear in the Proceedings of a Conference on Invariant Theory, West Chester University, 1985, Springer Lecture Notes.Google Scholar
  9. [9]
    Kemer, A.R.: Varieties and Z2 graded algebras. Izv. Akad. Nauk SSSR Ser. Mat. 48(1984), 1042–1059 (Russian). Translation: Math. USSR Izv. 25(1985) 359–374.MathSciNetGoogle Scholar
  10. [10]
    Kostant, B.: A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory. J. of Math. and Mech. 7(1958), 237–264.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Procesi, C.: The invariant theory of n×n matrics. Advances in Math. 19(1976), 306–381.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Razmyslov, Yu.P.: Trace identities of full matrix algebras over a field of characteristic zero. Izv. Akad. Nauk SSSR Ser. Mat. 38(1974), 723–756 (Russian). Translation: Math. USSR Izv. 8(1974), 727–760.MathSciNetGoogle Scholar
  13. [13]
    Regev, A.: Existence of identities in A⊗B. Israel J. of Math. 11(1972), 131–152.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Regev, A.: The representation of Sn and explicit identities for P.I. algebras. J. of Algebra 51(1978), 25–40.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Regev, A.: Algebras satisfying a Capelli identity. Israel J. of Math. 33(1979), 149–154.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Regev, A.: The Kronecker product of Sn-characters and an A⊗B theorem for Capelli identities. J. of Algebra 66(1980), 505–510.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Regev, A.: Asymptotic values for degrees associated with strips of Young diagrams. Advances in Math. 41(1981), 115–136.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Regev, A.: Codimensions and trace-codimensions are asymptotically equal. Israel J. of Math. 47(1984), 246–250.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Regev, A.: A combinatorial proof of a character formula of Procesi. J. "Linear and Multilinear Algebra". Vol. 21, No. 1, (1987), 29–39.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Regev, A.: On the identities of subalgebras of matrices over the Grassmann algebra. To appear in Israel J. of Math.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Amital Regev
    • 1
    • 2
  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations