Advertisement

Lie groups and ergodic theory

  • G. A. Margulis
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)

Keywords

Homogeneous Space Borel Measure Discrete Subgroup Left Translation Unipotent Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel A. Density properties for certain subgroups of semisimple groups without compact components. Ann.Math. 72, (1960), 179–188.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Billingsley P. Ergodic Theory and Information. John Wiley and Sons, Inc. New York, London, Sydney, 1965.zbMATHGoogle Scholar
  3. 3.
    Brezin J., Moore C.C. Flows on homogeneous spaces: a new look. Am. J.Math. 103, (1981), 571–613.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dani S.G. Invariant measures and minimal sets of horospherical flows. Invent.Math. 64, (1981), 357–385.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dani S.G. On uniformly distributed orbits of certain horocycle flows. Ergod.Th. and Dynam.Syst. 2, (1981), 139–158.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dani S.G. On orbits of unipotent flows on homogeneous spaces. Ergod. Th. and Dynam.Syst. 4, (1984), 25–34.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dani S.G. Orbits of horospherical flows. Duke Math.J. 53, (1986), 177–188.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dani S.G., Smillie J. Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math.J. 51, (1984), 185–194.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davenport H., Heilbronn H. On indefinite quadratic forms in five variables. J.Lond.Math.Soc., II ser., 21, (1946), 185–193.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davenport H., Ridout H. Indefinite quadratic forms. Proc.Lond.Math.Soc., III Ser., 9, (1959), 544–555.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cornfel'd I.P., Sinai Ya.G., Fomin S.V. Ergodic theory. Nauka 1980, Moscow (in Russian; English Translation: Springer-Verlag, Berlin, Heidelberg, New-York 1982).Google Scholar
  12. 12.
    Margulis G.A. Quotient groups of discrete subgroups and measure theory. Funkts.Anal.Prilozh. 12, No 4, (1978), 64–76 (in Russian; English translation: Funct.Anal.Appl. 12, (1978), 295–305).MathSciNetGoogle Scholar
  13. 13.
    Margulis G.A. Finiteness of quotient groups of discrete subgroups. (in Russian: Funkts.Anal.Prilozh. 13, No 3, (1979), 28–39; English translation: Funct.Anal.Appl. 13, (1979), 178–187).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Margulis G.A. Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1 (in Russian). Appendix to the Russian translation of: Raghunathan M.S. Discrete subgroups of Lie groups. Mir, Moscow, 1977. (English translation: Invent.Math. 76, (1984), 93–120).Google Scholar
  15. 15.
    Margulis G.A. Formes quadratiques indéfinies et flots unipotents sur les espaces homogènes. C.R.Acad.Sci.Paris, Ser. I, 304, (1987), 249–253.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Moore C.C. The Mautner phenomenon for general unitary representations. Pac.J.Math. 86, (1980), 155–169.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ratner M. Rigidity of horocycle flows. Ann.Math. 115, (1982), 597–614.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ratner M. Horocycle flows, joinings and rigidity of products. Ann. Math. 118, (1983), 277–313.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Starkov A.N. The ergodic behavior of flows on homogeneous spaces. Dokl.Akad.Nauk SSSR, 273, (1983), 538–540 (in Russian; English translation: Sov.Math.Dokl., 28 (1983), 675–676).MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tempelman A.A. Ergodic theorems on groups. Mokslas, Vil'nius, 1986 (in Russian).Google Scholar
  21. 21.
    Zimmer R.J. Strong rigidity for ergodic actions of semisimple Lie groups. Ann.Math. 112, (1980), 511–529.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zimmer R.J. Ergodic theory and semisimple groups. Birkhäuser Verlag, Boston, 1984.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • G. A. Margulis
    • 1
  1. 1.Institute for Problems of Information TransmissionMoscowUSSR

Personalised recommendations