Advertisement

On the laws of finite dimensional representations of solvable lie algebras and groups

  • A. N. Krasil'nikov
  • A. L. Šmel'kin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)

Keywords

Partial Order English Translation Associative Algebra Verbal Ideal Finite Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.P. Razmyslov. Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (in Russian). Algebra Logika 12 (1973), 83–113. (English translation: Algebra Logic, 12 (1973), 47–63 (1974)).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hanna Neumann. Varieties of groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37. Springer-Verlag, 1967.Google Scholar
  3. 3.
    Yu.A. Bahturin. Lectures on Lie algebras. Studien zur Algebra und ihre Anwendungen, Band 4. Akademic-Verlag, Berlin, 1978.zbMATHGoogle Scholar
  4. 4.
    M.R. Vaughan-Lee. Varieties of Lie algebras. Q.J. Math., Oxf. II Ser., 21 (1970), 297–308.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V.S. Drenski. On identities in Lie algebras (in Russian). Algebra Logika 13(1974), 265–290. (English translation: Algebra Logic 13 (1974), 150–165 (1975)).MathSciNetCrossRefGoogle Scholar
  6. 6.
    B.I. Plotkin. Varieties of group representations (in Russian). Usp. Mat. Nauk, 32 (1977), No. 5(197), 3–68. (English translation: Russ. Math. Surveys, 32 (1977), No. 5, 1–72).MathSciNetzbMATHGoogle Scholar
  7. 7.
    B.I. Plotkin. Varieties in representations of finite groups. Locally stable varieties. Matrix groups and varieties of representations (in Russian). Usp. Mat. Nauk, 34 (1979), No. 4(208), 65–95. (English translation: Russ. Math. Surveys, 34 (1979), No. 4, 69–103).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A.Yu. Ol'Šanskii. On the problem of a finite basis of identities in groups (in Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 34 (1970), 376–384. (English translation: Math. USSR, Izv., 4 (1970), 381–389 (1971)).MathSciNetGoogle Scholar
  9. 9.
    S.I. Adian. Infinite irreducible systems of group identities (in Russian). Dokl. Akad. Nauk SSSR, 190 (1970), 499–501. (English translation: Soviet Math., Dokl., 11 (1970), 113–115).MathSciNetGoogle Scholar
  10. 10.
    M.R. Vaughan-Lee. Uncountably many varieties of groups. Bull. Lond. Math. Soc., 2 (1970), 280–286.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R.M. Bryant and M.F. Newman. Some finitely based varieties of groups. Proc. Lond. Math. Soc., III Ser., 28 (1974), 237–252.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yu.N. Mal'cev. Basis for identities of the algebra of upper triangular matrices (in Russian). Algebra Logika, 10 (1971), 393–400. (English translation: Algebra Logic, 10 (1971), 242–247 (1973)).MathSciNetGoogle Scholar
  13. 13.
    Yu.P. Razmyslov. The Jacobson radical in PI-algebras (in Russian). Algebra Logika, 13 (1974), 337–360. (English translation: Algebra Logic, 13 (1974), 192–204 (1975)).MathSciNetGoogle Scholar
  14. 14.
    A.N. Krasil'nikov. The finite basis property for certain varieties of Lie algebras (in Russian). Vestn. Mosk. Univ., Ser. 1, No. 2 (1982), 34–38. (English translation: Mosc. Univ. Math. Bull., 37, No. 2 (1982), 44–48).MathSciNetzbMATHGoogle Scholar
  15. 15.
    D.E. Cohen. On the laws of a metabelian variety. J. Algebra 5 (1967), 267–273.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G. Higman. Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc., III Ser., 2 (1952), 326–336.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. N. Krasil'nikov
    • 1
  • A. L. Šmel'kin
    • 2
  1. 1.Department of Mathematics and PhysicsMoscow Regional Pedagogical InstituteMoscowUSSR
  2. 2.Department of Mathematics and MechanicsMoscow State UniversityMoscowUSSR

Personalised recommendations