Integral manifolds, harmonic mappings, and the abelian subspace problem

  • James A. Carlson
  • Domingo Toledo
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)


Tangent Space Tangent Bundle Heisenberg Group Hodge Structure Integral Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag 1978, pp. 462.Google Scholar
  2. 2.
    R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Macmillan 1968, pp. 280.Google Scholar
  3. 3.
    R. Bott, On a topological obstruction to integrability, Proc. Symp. Pure Math 26, 127–131.Google Scholar
  4. 4.
    J. A. Carlson, Bounds on the dimension of a variation of Hodge structure, Trans. AMS 294, March 1986, 45–64.CrossRefzbMATHGoogle Scholar
  5. 5.
    ___ and Ron Donagi, Hypersurface variations are maximal, Inventiones Math. 89 (1987), 371–374.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    ___, M. L. Green, P. A. Griffiths, and J. Harris, Infinitesimal variations of Hodge structures I, Compositio Math. 50 (1983), pp. 109–205.MathSciNetzbMATHGoogle Scholar
  7. 7.
    ___ and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de Géometrie Algébrique d'Angers 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands (1980), pp. 51–76.Google Scholar
  8. 8.
    ___ and C. Simpson, Shimura varieties of weight two Hodge structures, Hodge Theory, Springer Verlag LMN 1246 (1987) 1–15.Google Scholar
  9. 9.
    ___ and D. Toledo, Variations of Hodge structure, Legendre submanifolds, and accessibility, to appear in Trans. AMS.Google Scholar
  10. 10.
    10.___ and ___, Harmonic mappings of Kähler manifolds to locally symmetric spaces, preprint, University of Utah, May 1987.Google Scholar
  11. 11.
    E. Cartan, Les Systémes Différentiels Extérieurs et Leurs Applications Géométriques, Hermann & Cie, 1945, pp. 214.Google Scholar
  12. 12.
    M. Cornalba and P. A. Griffiths, Some transcendental aspects of algebraic geometry, Proc. Symp. Pure Math. 29 AMS 1974, 3–110.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. C. Courter, The maximum dimension of nilpotent subspaces of K n satisfying the identity S d, J. of Algebra 91 (1984), 82–110.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. Jour. Math. 86 (1964), 109–160.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. A. Griffiths, Periods of integrals on algebraic manifolds, III, Publ. Math. I.H.E.S. 38 (1970), 125–180.CrossRefzbMATHGoogle Scholar
  16. 16.
    ___ and W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Proceedings of the Bombay Colloquium on Discrete Subgroups of Lie Groups, Tata Institute for Fundamental Research, Bombay 1973.Google Scholar
  17. 17.
    17.___ and ___, Locally homogeneous complex manifolds, Acta Mathematical 79 (1964), 109–326.MathSciNetzbMATHGoogle Scholar
  18. 18.
    ___ and L. Tu, Variation of Hodge Structure, Topics in Transcendental Algebraic Geometry, P. A. Griffiths, ed., Ann. of Math. Studies 106, Princeton University Press 1984.Google Scholar
  19. 19.
    W. H. Gustafson, On maximal commutative algebras of linear transformations, J. of Algebra 42 (1976), 557–563.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    N. Jacobson, Schur's theorems on commutative matrices, Bull. Am. Math. Soc. 50 (1944), 431–436.CrossRefzbMATHGoogle Scholar
  21. 21.
    A. I. Malcev, Commutative subalgebras of semisimple Lie algebras, Izvestia Ak. Nauk USSR 9 (1945), 291–300 (Russian); AMS Translation 40 (1951) (English).MathSciNetGoogle Scholar
  22. 22.
    J. H. Sampson, Applications of harmonic maps to Kähler geometry, Contemp. Math. 49 (1986), pp. 125–133.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    I. Schur, Zur Theorie vertauschbaren Matrizen, J. Reine und Angew. Math. 130 (1905), 66–76.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Y. T. Siu, Complex analyticity of harmonic maps and strong rigidity of complex Kähler manifolds, Ann. Math. 112 (1980), 73–11.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    ___, complex analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom. 17 (1982), 55–138.MathSciNetzbMATHGoogle Scholar
  26. 26.
    D. A. Suprenenko and R. I. Tyshkevich, Commutative Matrices, Academic Press 1968 (New York), pp. 158.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • James A. Carlson
    • 1
  • Domingo Toledo
    • 1
  1. 1.Department of MathematicsUniversity of UtahSalt Lake City

Personalised recommendations