Advertisement

On representations of infinite groups

  • K. Buzási
Conference paper
  • 308 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)

Keywords

Left Ideal Group Algebra Wreath Product Finite Index Zero Divisor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Buzási, On invariants of pairs of finite abelian groups. (in Russian). Publ. Math. 28 (1981), 317–326.MathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Buzási, On the isomorphism of pairs of infinite abelian groups (in Russian). Publ. Math. 29 (1982), 139–154.MathSciNetGoogle Scholar
  3. 3.
    E. Szabó, Über isomorph Paare endlichen abelscher Grupper. Publ. Math. 33 (1986).Google Scholar
  4. 4.
    K. Buzási, On the structure of the wreath product of a finite number of cyclic groups of prime order. (in Russian). Publ. Math. 15 (1968), 107–129.MathSciNetGoogle Scholar
  5. 5.
    K. Buzási, The kernels of the irreducible representations of the Sylow p-subgroup of the symmetric group Spn. (in Russian). Publ. Math. 16 (1969), 199–227.Google Scholar
  6. 6.
    K. Buzási, The normal subgroups of the Sylow p-subgroup of the symmetric group Spn (in Russian). Publ. Math. 17 (1970), 333–347.MathSciNetGoogle Scholar
  7. 7.
    P. Lakatos, On the structure of the wreath product of two cyclic groups of prime power order (in Russian). Publ. Math. 22 (1975), 293–306.MathSciNetGoogle Scholar
  8. 8.
    L. Lakatos, The nilpotency class of iterated wreath products of cyclic groups of prime power order (in Russian). Publ. Math. 31 (1984), 153–156.MathSciNetzbMATHGoogle Scholar
  9. 9.
    K. Buzási, A. Pethö, P. Lakatos, On the code distance of a class of group codes, Probl. Peredachi Inf. 17, No. 3 (1981), 3–12 (in Russian). (English translation: in Probl. Inf. Transm.)Google Scholar
  10. 10.
    B. Brindza. On the code distance of certain classes of (p,p)-codes, Probl. Peredachi Inf. 21, No. 2 (1985), 10–19 (in Russian). (English translation: in Probl. Inf. Transm.)MathSciNetGoogle Scholar
  11. 11.
    S.D. Berman, K. Buzási. On the representations of the infinite dihedral group. (in Russian). Publ. Math. 28 (1981), 173–187.MathSciNetzbMATHGoogle Scholar
  12. 12.
    S.D. Berman, K. Buzási. On the representations of a group which contains an infinite cyclic subgroup of finite index (in Russian). Publ. Math. 29 (1983), 163–170.zbMATHGoogle Scholar
  13. 13.
    S.D. Berman, K. Buzási. On the modules over group algebras of groups which contain an infinite cyclic subgroup of finite index (in Russian). Studia Sci. Math. Hung. 16 (1981), 455–470.zbMATHGoogle Scholar
  14. 14.
    S.D. Berman, K. Buzási. A description of all the finite dimensional real representations of groups which contain an infinite cyclic subgroup of finite index (in Russian). Publ. Math. 31 (1984), 133–144.MathSciNetzbMATHGoogle Scholar
  15. 15.
    K. Buzási. On real group algebras of groups with an infinite cyclic subgroup of finite index (in Russian). Publ. Math. 32 (1985), 267–276.MathSciNetzbMATHGoogle Scholar
  16. 16.
    K. Buzási, T. Krausz, Z.M. Moneim. On twisted group algebras over finite fields (in Russian). Publ. Math. 33 (1986), 147–152.zbMATHGoogle Scholar
  17. 17.
    K. Buzási, T. Krausz. A description of the twisted group algebras over finite fields. (in Russian). Acta Sci. Math. (to appear).Google Scholar
  18. 18.
    K. Buzási, Z.M. Moneim. On the realization of twisted algebras in group algebras over finite fields. (in Russian). Publ. Math. (to appear).Google Scholar
  19. 19.
    G. Fazekas, A. Pethö, Permutational Source Coding. The Sixth International Conference on Information Theory. Abstr. of Papers. Moscow-Tashkent, 1984.Google Scholar
  20. 20.
    G. Fazekas, Permutational Source Coding in Picture Processing. TCGT-84. Abstr. of Papers, Debrecen, 1984.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Buzási
    • 1
  1. 1.Mathematical Institute of L. Kossuth UniversityDebrecenHungary

Personalised recommendations