Matrix factorizations of homogeneous polynomials

  • Jörgen Backelin
  • Jürgen Herzog
  • Herbert Sanders
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1352)


Matrix Factorization Homogeneous Polynomial Clifford Algebra Diagonal Form Hilbert Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABS]
    M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3, Suppl. (1964), 3–38.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ba]
    J. Backelin, La séire de Poincaré-Betti d'une algèbre graduée de type fini à une relation est rationnelle, C. R. Acad. Sc. Paris 287 (1978), 846–849.MathSciNetzbMATHGoogle Scholar
  3. [Be]
    G. M. Bergman, The diamond lemma for ring theory, Advances in Math. 29 (1978), 178–218.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BEH]
    R. O. Buchweitz, D. Eisenbud, J. Herzog, Cohen-Macaulay modules on quadrics, to appear in the Proceedings of the Lambrecht Conference ‘Representations of algebras, singularities and vector bundels’ (S.L.N.).Google Scholar
  5. [BHU]
    J. P. Brennan, J. Herzog, B. Ulrich, Maximally generated Cohen-Macaulay modules, to appear in Math. Scand..Google Scholar
  6. [C]
    L. N. Childs, Linearizing of n-ic forms and generalized Clifford algebras, Linear and Multilinear Algebra 5 (1978), 267–278.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [E]
    D. Eisenbud, Homological algebra on a complete intersection with an application to group representations, Trans. AMS 260 (1980), 35–64.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [H]
    N. Heerema, An algebra determined by a binary qubic form, Duke math J. 21 (1954), 423–444.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [HK]
    J. Herzog, M. Kühl, Maximal Cohen-Macaulay modules over Gorenstein rings and Bourbaki-sequences, Advanced Studies in Pure Mathematics 11, 1987, Commutative Algebra and Combinatorics.Google Scholar
  10. [HS]
    J. Herzog, H. Sanders, The Grothendieck group of invariant rings and of simple hypersurface singularities, to appear in the Proceedings of the Lambrecht Conference ‘Representations of algebras, singularities and vector bundels’ (S.L.N.).Google Scholar
  11. [K]
    H. Knörrer, Maximal Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1985), 153–164.CrossRefzbMATHGoogle Scholar
  12. [L]
    F. W. Long, Generalized Clifford algebras and dimodule algebras, J. London Math. Soc. (2) 13 (1976), 438–442.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [M]
    J. Milnor, Introduction to algebraic K-theory, (Annals of Math. Studies No. 72, Princeton, 1971).Google Scholar
  14. [R]
    N. Roby, Algèbres de Clifford des formes polynomes, C. R. Acad. Sc. Paris 268 (1969), 484–486.MathSciNetzbMATHGoogle Scholar
  15. [Sch]
    W. Scharlau, Quadratic and Hermitian Forms, Grundlehren 270, Springer-Verlag, Berlin Heidelberg, 1985.CrossRefGoogle Scholar
  16. [St]
    U. Storch, Die Picard-Zahlen der Singularitäten G2Sn, J. Reine Angew. Math. 350 (1984), 188–202.MathSciNetzbMATHGoogle Scholar
  17. [U]
    B. Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), 23–32.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jörgen Backelin
  • Jürgen Herzog
  • Herbert Sanders

There are no affiliations available

Personalised recommendations