Advertisement

Transformation de bochner-martinelli dans une variété de stein

  • Christine Laurent-Thiébaut
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1295)

Résumé

Etant donné une forme différentielle C1 ou un courant d'ordre nul, f, à support compact sur une hypersurface réelle d'une variété de Stein, on définit, en utilisant les noyaux globaux de Henkin et Leiterer, une transformée de Bochner-Martinelli généralisée de f et on étudie son comportement au voisinage de l'hypersurface. Dans le cas où l'hypersurface est le bord d'un domaine relativement compact et où f est une mesure vérifiant les conditions de Cauchy-Riemann, on obtient une généralisation du théorème d'extension de Bochner.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    A. ANDREOTTI et C.D. HILL.-E.E. Levi convexity and the Hans Lewy problem I. Reduction to vanishing theorems. Ann. Scuola Norm. Sup. Pisa, 26, 1972, p. 325–363.MathSciNetzbMATHGoogle Scholar
  2. [2]
    S. BOCHNER.-Analytic and meromorphic continuation by means of Green's formula. Ann. of Math. (2), 44, 1943, p. 652–673.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    E.M. ČIRKA.-Analytic representation of CR-functions. Math. USSR Sbornik (4), 27, (1975), p. 526–553.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. FICHERA.-Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di piu variabili complesse. Atti Accad. Naz. Liencei Rend. Sci. Fis. Mat. Nat. (8), 22, 1957, p. 706–715.MathSciNetzbMATHGoogle Scholar
  5. [5]
    R. HARVEY.-Holomorphic chains and their boundaries. Proc. of Sym. in Pure Math., 30, 1977, p. 309–382.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R. HARVEY et H.B. LAWSON.-Boundaries of complex analytic varieties I. Ann. of Math., 102, 1975, p. 233–290.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. HARVEY et J. POLKING.-Fundamental solution in complex analysis. Duke Math. Journal (2), 46, 1979, p. 253–340.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G.M. HENKIN.-The Lewy equation and analysis on pseudoconvex manifolds. Russian Math. surveys (3), 32, 1977, p. 59–130.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.M. HENKIN et J. LEITERER.-Global integral formulas for solving the ∂-equation on Stein manifold. Ann. Pol. Math., 39, 1981, p. 93–116.MathSciNetzbMATHGoogle Scholar
  10. [10]
    G.M. HENKIN et J. LEITERER.-Theory of functions on complex manifold. Birkhaüser Verlag 1984.Google Scholar
  11. [11]
    J.J. KOHN et H. ROSSI.-On the extension of holomorphic functions from the boundary of a complex manifold. Ann. of Math. (2), 81, 1965, p. 451–472.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. ŁOJASIEWICZ et G. TOMASSINI.-Valeur au bord des formes holomorphes. Proc. of Int. conf., Cortona, Italie, 1976–77, p. 222–245.Google Scholar
  13. [13]
    E. MARTINELLI.-Sopra una dimonstrazione di R. Fueter per un teorema di Hartogs. Comment. Math. Helv. 15, 1943, p. 340–349.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. MARTINELLI.-Sulla determinazione di una funzione analitica di piu variabili complesse in un campo, assegnatone la traccia sulla frontiera. Ann. di Math. pura ed appl. (4), 55, 1961, p. 191–202.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    C. MIRANDA.-Partial differential equations of elliptic type, Springer-Verlag, Berlin, 1970.CrossRefzbMATHGoogle Scholar
  16. [16]
    F. NORGUET.-Introduction aux fonctions de plusieurs variables complexes, représentations intégrales. Lecture Notes no 409, 1974, p. 1–97.Google Scholar
  17. [17]
    J. POLKING et R.O. WELLS.-Boundary values of Dolbeault cohomology classes and a generalized Bochner-Hartogs theorem. Abh. Math. Sem. Univ. Hamburg, 47, 1978, p. 3–24.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    B.M. WEINSTOCK.-Continuous boundary values of analytic functions of several complex variables. Proc. amer. Math. Soc., 21, 1969, p. 463–466.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Christine Laurent-Thiébaut
    • 1
  1. 1.C.N.R.S., U.A.213, Tour 45–46, 5e étageUniversité de Paris VIParisFrance

Personalised recommendations