Advertisement

On two theorems of lozanovskii concerning intermediate Banach lattices

  • Shlomo Reisner
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1317)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.M. Borwein and D. Zhung, On Fan's minimax theorem, Math. Prog. 34 (1986), 232–234.CrossRefzbMATHGoogle Scholar
  2. [2]
    A.P. Calderon, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.MathSciNetzbMATHGoogle Scholar
  3. [3]
    K. Fan, Minimax theorems, Proc. Nat. Acad. Sc. USA 39 (1953), 42–47.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T.A. Gillespie, Factorization in Banach function spaces, Indag. Math. 43 (1981), 287–300.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R.E. Jamison and W.H. Ruckle, Factoring absolutely convergent series, Math. Ann. 224 (1976), 143–148.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.CrossRefzbMATHGoogle Scholar
  7. [7]
    G.Ya. Lozanovskii, On some Banach lattices, Siberian Math. J. 10 (1969), 419–431 (English translation).CrossRefGoogle Scholar
  8. [8]
    G.Ya. Lozanovskii, On some Banach lattices III, Siberian Math. J. 13 (1972), 910–916 (English translation).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.Ya. Lozanovskii, On some Banach lattices IV, Siberian Math. J. 14 (1973), 97–108 (English translation).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.C. Zaanen, Integration, North-Holland, Amsterdam, 1967.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Shlomo Reisner
    • 1
  1. 1.Department of Mathematics and School of Education of the Kibbutz MovementUniversity of HaifaHaifaIsrael

Personalised recommendations