Skip to main content

Are there topoi in topology?

  • Conference paper
  • First Online:
Categorical Topology

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 540))

Abstract

The straight answer is no. Topoi are too set-like to occur as categories of sets with topological structure. However, if A is a category of sets with structure, and if A has enough substructures, then A has a full and dense embedding into a complete quasitopos of sets with structure. There is a minimal embedding of this type; it embeds e.g. topological spaces into the quasitopos of Choquet spaces. Quasitopoy are still very set-like. They are cartesian closed, and all colimits in a quasitopos are preserved by pullbacks. Thus quasitopoi are in a sense ultra-convenient categories for topologists. Quasitopoi inherit many properties from topoi. For example, the theory of geometric morphisms of topoi remains valid, almost without changes, for quasitopoi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoine, P., Extension minimale de la catégorie des espaces topologiques. C. R. Acad. Sc. Paris 262 (1966), sér. A, 1389–1392.

    MathSciNet  MATH  Google Scholar 

  2. Antoine, P., Etude élémentaire des catégories d'ensembles structurés. Bull. Soc. Math. Belgique 18 (1966), 142–166 and 387–414.

    MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G., Lattice Theory. Rev. Ed. Providence, 1948.

    Google Scholar 

  4. Choquet, G., Convergences. Ann. Univ. Grenoble, Sect. Sc. Math. Phys. (N.S.) 23 (1948), 57–112.

    MathSciNet  MATH  Google Scholar 

  5. Day, B., A reflection theorem for closed categories. J. Pure Appl. Alg. 2 (1972), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  6. Day, B., Limit spaces and closed span categories. Category Seminar, Sidney 1972/73, pp. 65–74. Lecture Notes in Math. 420 (1974).

    Google Scholar 

  7. Day, B.J., and G.M. Kelly, On topological quotient maps. Proc. Camb. Phil. Soc. 67 (1970), 553–558.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, H.R., Limesräume. Math. Annalen 137 (1959), 269–303.

    Article  MATH  Google Scholar 

  9. Freyd, P., Aspects of topoi. Bull. Austral. Math. Soc. 7 (1972), 1–76.

    Article  MathSciNet  MATH  Google Scholar 

  10. Herrlich, H., Cartesian closed topological categories. Preprint (1974).

    Google Scholar 

  11. Jurchescu, A., and M. Lascu, Morphisme stricte, categoriî cantoriene, functori de completare. Studiî Cerc. Mat. 18 (1966), 219–234.

    MathSciNet  Google Scholar 

  12. Kelly, G.M., Monomorphisms, epimorphisms, and pullbacks. J. Austral. Math. Soc. 9 (1969), 124–142.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kock, A., and G. C. Wraith, Elementary toposes. Lecture Note Series, no. 30. Matematisk Institut, Aarhus Universitet, 1971.

    Google Scholar 

  14. Kowalsky, H.-J., Limesräume und Komplettierung. Math. Nachr. 12 (1954), 301–340.

    Article  MathSciNet  MATH  Google Scholar 

  15. MacLane, S., Categories for the Working Mathematician. Springer, 1971.

    Google Scholar 

  16. Penon, J., Quasi-topos. C. R. Acad. Sc. Paris, 276 (1973), Sér. A, 237–240.

    MathSciNet  MATH  Google Scholar 

  17. Schroder, M., Solid convergence spaces. Bull. Austral. Math. Soc. 8 (1973), 443–459.

    Article  MathSciNet  MATH  Google Scholar 

  18. Steenrod, N.E., A convenient category of topological spaces. Michigan Math. J. 14 (1967), 133–152.

    Article  MathSciNet  MATH  Google Scholar 

  19. Stout, L.N., General topology in an elementary topos. Ph.D. Thesis, University of Illinois, 1974.

    Google Scholar 

  20. Tierney, M., Axiomatic sheaf theory: some constructions and applications. C.I.M.E. III Ciclo 1971, Varenna 12–21 Settembee. Cremonese, Roma, 1973.

    MATH  Google Scholar 

  21. Verdier, J.L., SGA 4/I, Théorie des topos et cohomologie étale des schémas, Exposés I–IV. 2me. éd. Lecture Notes in Math. 269 (1972).

    Google Scholar 

  22. Wyler, O., On the categories of general topology and topological algebra. Arch. Math. 22 (1971), 7–17.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wyler, O., Top categories and categorical topology. Gen. Top. Appl. 1 (1971), 17–28.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wyler, O., Quotient maps. Gen. Top. Appl. 3 (1973), 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wyler, O., Convenient categories for topology. Gen. Top. Appl. 3 (1973), 225–242.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ernst Binz Horst Herrlich

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Wyler, O. (1976). Are there topoi in topology?. In: Binz, E., Herrlich, H. (eds) Categorical Topology. Lecture Notes in Mathematics, vol 540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0080884

Download citation

  • DOI: https://doi.org/10.1007/BFb0080884

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07859-3

  • Online ISBN: 978-3-540-38118-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics