Advertisement

Locally Noetherian categories and generalized strictly linearly compact rings. Applications

  • Jan-Erik Roos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 92)

Keywords

Exact Sequence Left Ideal Finite Type Endomorphism Ring Fundamental System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    I. KR. AMDAL— F. RINGDAL, Catégories unisérielles, Comptes rendus, série A, 267, 1968, p. 85–87 and p. 247–249.MathSciNetzbMATHGoogle Scholar
  2. [2]
    B. BALLET, Structure des anneaux strictement linéairement compacts commutatifs, Comptes rendus, série A, 266, 1968, p. 1113–1116.MathSciNetzbMATHGoogle Scholar
  3. [3]
    H. BASS, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95, 1960, p. 466–488.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. BASS, Injective dimension in noetherian rings, Trans. Amer. Math. Soc., 102, 1962, p. 18–29.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. BASS, Lectures on Topics in Algebraic K-theory, Tata Institute of Fundamental Research, Bombay, 1967.zbMATHGoogle Scholar
  6. [6]
    J.-E. BJÖRK, Rings satisfying a minimum condition on principal ideals (to appear in J. reine ang. Math.).Google Scholar
  7. [7]
    J.-E. BJÖRK, On perfect rings, QF-rings and rings of endomorphisms of injective modules (to appear).Google Scholar
  8. [8]
    N. BOURBAKI, Topologie générale, Chap. 1–2, 3e éd., Hermann, Paris, 1961.zbMATHGoogle Scholar
  9. [9]
    N. BOURBAKI, Algèbre commutative, Chap. 1–2, Hermann, Paris, 1961.zbMATHGoogle Scholar
  10. [10]
    N. BOURBAKI, Algèbre commutative, Chap. 3–4, Hermann, Paris, 1961.zbMATHGoogle Scholar
  11. [11]
    A. BRUMER, Pseudo-compact algebras, profinite groups and class formations, J. Algebra, 4, 1966, p. 442–470.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. CARTAN— S. EILENBERG, Homological Algebra, Princeton University Press, Princeton, 1956.zbMATHGoogle Scholar
  13. [13]
    S. U. CHASE, Direct products of modules, Trans. Amer. Math. Soc., 97, 1960, p. 457–473.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. U. CHASE, A generalization of the ring of triangular matrices, Nagoya Math. J., 18, 1961, p. 13–25.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. M. COHEN, Coherent graded rings and the non-existence of spaces of finite stable homotopy type (to appear in Comm. Math. Helv.). *** DIRECT SUPPORT *** A00J4082 00004Google Scholar
  16. [16]
    C. W. CURTIS— I. REINER, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1962.zbMATHGoogle Scholar
  17. [17]
    P. DELIGNE, Cohomologie à support propre et construction du foncteur f, Appendix to [34].Google Scholar
  18. [18]
    J. DIEUDONNÉ, Topics in Local Algebra, Notre Dame Math. Lectures, n° 10, 1967.Google Scholar
  19. [19]
    C. FAITH— Y. UTUMI, Quasi-injective modules and their endomorphism rings, Arch. der Math., 15, 1964, p. 166–174.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    C. FAITH, Rings with ascending condition on annihilators, Nagoya Math. J., 27, 1966, p. 179–191.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C. FAITH— E. A. WALKER, Direct-sum representations of injectivo modules, J. Algebra, 5, 1967, p. 203–221.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. FREYD, Functor Categories and their Application to Relative Homology (mimeographed notes), Columbia University, 1962.Google Scholar
  23. [23]
    P. GABRIEL, Objects injectifs dans les catégories abéliennes, Séminaire Dubreil-Pisot, 12, 1958–1959, Exposé 17.Google Scholar
  24. [24]
    P. GABRIEL, Sur les catégories abéliennes localement noethériennes et leurs applications aux algèbres étudiées par Dieudonné, Séminaire J.-P. Serre, Collège de France, 1959–1960.Google Scholar
  25. [25]
    P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. Fr., 90, 1962, p. 323–448.MathSciNetzbMATHGoogle Scholar
  26. [26]
    P. GABRIEL, Groupes formels, Séminaire Demazure-Grothendieck, I.H.E.S., 1963–1964, Fasc. 2 b, Exposé VIIB (cf. math. Rev. 35, 1968, #4222).Google Scholar
  27. [27]
    P. GABRIEL— U. OBERST, Spektralkategorien und reguläre Ringe im von Neumannschen Sinn, Math. Z., 92, 1966, p. 389–395.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    P. GABRIEL— R. RENTSCHLER, Sur la dimension des anneaux et ensembles ordonnés, Comptes rendus, série A, 265, 1967, p. 712–715.MathSciNetzbMATHGoogle Scholar
  29. [29]
    E. S. GOLOD— I. R. ŠAFAREVIČ, O bašne polej klassov, Izv. Akad. Nauk SSSR, ser. mat., 28, 1964, p. 261–272. English translation in: American Mathematical Society Translations, Ser. 2, 48, 1965, p. 91–102.MathSciNetGoogle Scholar
  30. [30]
    A. GROTHENDIECK, Sur quelques points d'algèbre homologique, Tohoku Math. J., 9, 1957, p. 119–221.MathSciNetzbMATHGoogle Scholar
  31. [31]
    A. GROTHENDIECK, Technique de descente et théorèmes d'existence en géométric algébrique, II: Le théorème d'existence en théorie formelle des modules, Séminaire Bourbaki, 12, 1959–1960, Exposé 195 (Has also been published by Benjamin, New York, 1966.).Google Scholar
  32. [32]
    A. GROTHENDIECK (and J. DIEUDONNÉ), Eléments de géométrie algébrique, Publ. Math. I.H.E.S., n° 20, 1964.Google Scholar
  33. [33]
    M. HARADA, On a special type of hereditary abelian categories, Osaka J. Math., 4, 1967, p. 243–256.MathSciNetzbMATHGoogle Scholar
  34. [34]
    R. HARTSHORNE, Residues and Duality, Springer, Berlin, 1966.CrossRefzbMATHGoogle Scholar
  35. [35]
    I. KAPLANSKY, Dual modules over a valuation ring, Proc. Amer. Math. Soc., 4, 1953, p. 213–219.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    I. KAPLANSKY, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.zbMATHGoogle Scholar
  37. [37]
    F. W. LAWVERE, The category of categories as a foundation for mathematics, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin, 1966, p. 1–20.zbMATHGoogle Scholar
  38. [38]
    H. LEPTIN, Linear kompakte Moduln und Ringe, I. Math. Z., 62, 1955, p. 241–267.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    H. LEPTIN, Linear kompakte Moduln und Ringe, II., Math. Z., 66, 1956–1957, p. 289–327.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    E. MATLIS, Injective modules over noetherian rings, Pacific J. Math., 8, 1958, p. 511–528.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    B. MITCHELL, Theory of Categories, Academic Press, New York, 1965.zbMATHGoogle Scholar
  42. [42]
    C. NÂSTÂSESCU—N. POPESCU, Quelques observations sur les topos abéliens, Rev. Roum. Math. Pures et Appl., 12, 1967, p. 553–563.zbMATHGoogle Scholar
  43. [43]
    Y. NOUAZÉ, Catégories localement de type fini et catégories localement noethériennes, Comptes rendus, 257, 1963, p. 823–824.zbMATHGoogle Scholar
  44. [44]
    F. OORT, Commutative Group Schemes, Springer, Berlin, 1966.CrossRefzbMATHGoogle Scholar
  45. [45]
    Z. PAPP, On algebraically closed modules, Publ. Math. Debrecen, 6, 1959, p. 311–327.MathSciNetzbMATHGoogle Scholar
  46. [46]
    J.-E. ROOS, Sur les foncteurs dérivés de lim. Applications. Comptes rendus, 252, 1961, p. 3702–3704.zbMATHGoogle Scholar
  47. [47]
    J.-E. ROOS, Bidualité et structure des foncteurs dérivés de lim dans la catégorie des modules sur un anneau régulier, Comptes rendus, 254, 1962, p. 1556–1558 and p. 1720–1722.zbMATHGoogle Scholar
  48. [48]
    J.-E. ROOS, Caractérisation des catégories qui sont quotients de catégories de modules par des sous-catégories bilocalisantes, Comptes rendus, 261, 1965, p. 4954–4957.zbMATHGoogle Scholar
  49. [49]
    J.-E. ROOS, Sur les foncteurs dérivés des produits infinis dans les catégories de Grothendieck. Exemples et contre-examples, Comptes rendus, 263, 1966, p. 895–898.zbMATHGoogle Scholar
  50. [50]
    J.-E. ROOS, Sur la condition AB 6 et ses variantes dans les catégories abéliennes, Comptes rendus, série A, 264, 1967, p. 991–994.zbMATHGoogle Scholar
  51. [51]
    J.-E. ROOS, Locally distributive spectral categories and strongly regular rings, Reports of the Midwest Category Seminar, Springer, Berlin, 1967, p. 156–181.Google Scholar
  52. [52]
    J.-E. ROOS, Sur l'anneau maximal de fractions des AWh-algèbres et des anneaux de Baer, Comptes rendus, série A, 266, 1968, p. 120–123.zbMATHGoogle Scholar
  53. [53]
    J.-E. ROOS, Sur la décomposition bornée des objets injectifs dans les catégories de Grothendieck, Comptes rendus, série A, 266, 1968, p. 449–452.zbMATHGoogle Scholar
  54. [54]
    J.-E. ROOS, Sur la structure des catégories abéliennes localement noethériennes, Comptes rendus, séric A, 266, 1968, p. 701–704.zbMATHGoogle Scholar
  55. [55]
    Séminaire H. CARTAN, 11, 1958–1959, Exposé 15. (Has also been published by Benjamin, New York, 1967.)Google Scholar
  56. [56]
    J.-P. SERRE, Groupes proalgébriques, Publ. Math. I.H.E.S. no 7, 1960.Google Scholar
  57. [57]
    J.-P. SERRE, Algèbre Locale. Multiplicités (rédigé par P. Gabriel), Springer, Berlin 1965.zbMATHGoogle Scholar
  58. [58]
    J.-P. SERRE, Cohomologie Galoisienne, Springer, Berlin, 1965.CrossRefzbMATHGoogle Scholar
  59. [59]
    Y. UTUMI, On a theorem on modular lattices, Proc. Jap. Acad., 35, 1959, p. 16–21.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    J.-L. VERDIER, Topologies et faisceaux, Fasc. 1 of Séminaire Artin-Grothendieck, I.H.E.S., 1963–1964. *** DIRECT SUPPORT *** A00J4082 00005Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Jan-Erik Roos
    • 1
  1. 1.Department of MathematicsUniversity of LundSweden

Personalised recommendations