Advertisement

Harmonische Gruppen und Huntsche Faltungskerne

  • Jürgen von Bliedtner
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 69)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. H. BAUER: [1] Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Mathematics, 22. Berlin-Heidelberg-New York (1966).Google Scholar
  2. J. BLIEDTNER: [2] Groupes harmoniques et noyaux de convolution de Hunt. C. R. Acad. Sc. de Paris 266 (1968), 529–531.MathSciNetzbMATHGoogle Scholar
  3. N. BOBOG, C. CONSTANTINESCU, A. CORNEA: [3] Axiomatic theory of harmonic functions.— Non-negative superharmonic functions. Ann. Inst. Fourier 15/1 (1965), S. 283–312.MathSciNetCrossRefzbMATHGoogle Scholar
  4. : [4] Axiomatic theory of harmonic functions.— Balayage. Ann. Inst. Fourier 15/2 (1965) S. 37–70.MathSciNetCrossRefzbMATHGoogle Scholar
  5. : [5] Semigroups of Transitions on Harmonic Spaces. Rev. Roum. Math. Pures et Appl. 12 (1967) S. 763–805.MathSciNetzbMATHGoogle Scholar
  6. J.-M. BONY: [6] Détermination des axiomatiques de théorie du potentiel dont les fonctions harmoniques sont différentiables. Ann. Inst. Fourier 17/1 (1967) S. 353–382.MathSciNetCrossRefzbMATHGoogle Scholar
  7. N. BOURBAKI: [7] Intégration, chap. I–IV (2e édition). Act. Sci. et Ind. 1175, Paris (1965).Google Scholar
  8. N. BOURBAKI: [8] Intégration, chap. VII–VIII. Act. Sci. et Ind. 1306, Paris (1963).Google Scholar
  9. M. BRELOT: [9] Eléments de la théorie classique du potentiel (3e édition). Les cours de Sorbonne, Paris (1965).Google Scholar
  10. C. CONSTANTINESCU: [10] Harmonic spaces. Absorbant sets and balayage. Rev. Roum. Math. Pures et Appl., 11 (1966) S. 887–910.MathSciNetzbMATHGoogle Scholar
  11. : [11] Some properties of the balayage of measures on a harmonic space. Ann. Inst. Fourier 17/1 (1967) S. 273–293.MathSciNetCrossRefzbMATHGoogle Scholar
  12. J. DENY: [12] Familles fondamentales: noyaux associés. Ann. Inst. Fourier 3 (1951) S. 76–101.MathSciNetCrossRefzbMATHGoogle Scholar
  13. : [13] Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale. Ann. Inst. Fourier 12 (1962) S. 643–667.MathSciNetCrossRefzbMATHGoogle Scholar
  14. B. FUGLEDE: [14] On the theory of potentials in locally compact spaces. Acta math. 103 (1960) S. 139–215.MathSciNetCrossRefzbMATHGoogle Scholar
  15. W. HANSEN: [15] Konstruktion von Halbgruppen und Markoffschen Prozessen. Invent. math. 3 (1967) S. 179–214.MathSciNetCrossRefzbMATHGoogle Scholar
  16. G. A. HUNT: [16] Markoff processes and potentials. Ill. J. Math. 1 (1957) S. 44–93.MathSciNetzbMATHGoogle Scholar
  17. P.A. MEYER: [17] Probabilités et potentiels. Act. Sci. et Ind. 1318, Paris (1966).Google Scholar
  18. D. MONTGOMERY:, L. ZIPPIN: [18] Topological transformation groups (3 rd printing). Intersci. tracts in pures and appl. math., 1. New York (1965).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Jürgen von Bliedtner

There are no affiliations available

Personalised recommendations