Strong homotopy algebras over monads

  • Thomas J. Lada
Part of the Lecture Notes in Mathematics book series (LNM, volume 533)


Commutative Diagram Natural Transformation Homotopy Class Homotopy Type Loop Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck, J. On H-spaces and infinite loop spaces, Category Theory, Homology Theory and Their Applications, III, Springer-Verlag, 1969.Google Scholar
  2. 2.
    Boardman, J. M. and Vogt, R. M. Homotopy-everything H-spaces, Bull. AMS., 74(1968), 1117–1122.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boardman, J. M. and Vogt, R. M. Homotopy Invariant Algebraic structures on Topological Spaces, Springer-Verlag, 1973.Google Scholar
  4. 4.
    Dold, A. and Lashof, R. Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. of Math., 3(1959), 285–305.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dold, A. and Thom, R. Quasifaserungen und unendliche symmetriche produkte, Ann. of Math., (2) 67 (1958), 239–281.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fuchs, Martin. A modified Dold-Lashof construction that does classify H-principal fibrations, Math. Ann., 192(1971), 328–340.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    James, I. M. On H-spaces and their homotopy groups, Quart. J. Math. Oxford (2) 11(1960), 161–179.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lada, T. and Malraison, P. Categories of triple algebras, (preprint).Google Scholar
  9. G.
    May, J. P. The Geometry of Iterated Loop Spaces, Springer-Verlag, 1972.Google Scholar
  10. G′.
    -. E spaces, group completions, and permutative categories, London Mathematical Society Lecture Note Series 11, p. 61–94, 1974, Cambridge University Press.MathSciNetzbMATHGoogle Scholar
  11. 9.
    Milnor, J. Construction of universal bundles, I, Ann. of Math., (2) 63(1956), 272–284.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 10.
    Segal, G. Categories and cohomology theories, Topology, 13(1974), 293–312.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 11.
    Stasheff, J. D. Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108(1963), 275–292, ibid Stasheff, J. D. Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc., 108 (1963), 292–312.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 12.
    Stasheff, J. D. H-spaces From a Homotopy Point of View, Springer-Verlag, 1970.Google Scholar
  15. 13.
    Steenrod, N. A conventient category of topological spaces, Mich. Math. J., 14(1967), 133–152.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Thomas J. Lada

There are no affiliations available

Personalised recommendations