Advertisement

The homology of E spaces

  • J. P. May
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 533)

Keywords

Hopf Algebra Spectral Sequence Loop Space Smash Product Admissible Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    S. Araki and T. Kudo. Topology of Hn-spaces and H-squaring operations. Mem. Fac. Sci. Kyusyu Univ. Ser. A 10 (1956), 85–120.MathSciNetzbMATHGoogle Scholar
  2. 2.
    W. Browder. Homology operations and loop spaces. Illinois J. Math. 4 (1960), 347–357.MathSciNetzbMATHGoogle Scholar
  3. 3.
    W. Browder. Torsion in H-spaces. Annals of Math. 74 (1961), 24–51.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. Browder. The Kervaire invariant for framed manifolds and its generalizations. Annals of Math. 90 (1969), 157–186.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    H. Cartan and S. Eilenberg. Homological Algebra. Princeton University Press. 1956.Google Scholar
  6. 6.
    E. Dyer and R. K. Lashof. Homology of iterated loop spaces. Amer. J. Math. 84 (1962), 35–88.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Mac Lane. Homology. Springer-Verlag. 1963.Google Scholar
  8. 8.
    I. Madsen. On the action of the Dyer-Lashof algebra in H*G. Pacific J. Math. To appear.Google Scholar
  9. 9.
    I. Madsen. Higher torsion in SG and BSG. Math. Zeitschrift. 143 (1975), 55–80.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. P. May. Categories of spectra and infinite loop spaces. Springer Lecture Notes in Mathematics Vol. 99, 1969, 448–479.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. P. May. Some remarks on the structure of Hopf algebras. Proc. Amer. Math. Soc. 23 (1969), 708–713.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. P. May. Homology operations on infinite loop spaces. Proc. Symp. Pure Math. Vol. 22, 171–185. Amer. Math. Soc. 1971.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. P. May. The stable homotopy category. To appear.Google Scholar
  14. 14.
    J. Milnor. The Steenrod algebra and its dual. Annals of Math. 67 (1958), 150–171.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. C. Moore and L. Smith. Hopf algebras and multiplicative fibrations I. Amer. J. Math. 90 (1968), 752–780.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Nakaoka. Decomposition theorem for homology groups of symmetric groups. Annals of Math. 71 (1960), 16–42.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Nakaoka. Homology of the infinite symmetric group. Annals of Math. 73 (1961), 229–257.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Nakaoka. Note on cohomology algebras of symmetric groups. J. Math. Osaka City Univ. 13 (1962), 45–55.MathSciNetzbMATHGoogle Scholar
  19. 19.
    G. Nishida. Cohomology operations in iterated loop spaces. Proc. Japan Acad. 44 (1968), 104–109.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    S. Priddy. On ΩS and the infinite symmetric group. Proc. Symp. Pure Math. Vol. 22, 217–220. Amer. Math. Soc. 1971.MathSciNetCrossRefGoogle Scholar
  21. 21.
    N. E. Steenrod. Cohomology operations derived from the symmetric group. Comment. Math. Helv. 31 (1957), 195–218.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    N. E. Steenrod. The cohomology algebra of a space. L'Enseignement Mathématique 7 (1961), 153–178.MathSciNetzbMATHGoogle Scholar
  23. 23.
    N. E. Steenrod and D. B. A. Epstein. Cohomology Operations. Princeton University Press. 1962.Google Scholar
  24. 24.
    N. E. Steenrod and E. Thomas. Cohomology operations derived from cyclic groups. Comment. Math. Helv. 32 (1957), 129–152.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    E. Thomas. The generalized Pontryagin cohomology operations and rings with divided powers. Memoirs Amer. Math. Soc. No. 27 (1957).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. P. May

There are no affiliations available

Personalised recommendations