Cyclic and faithful objects in quotient categories with applications to noetherian simple or asano rings

  • R. C. Robson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 545)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Eisenbud and J. C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970), 67–85.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Gabriel, Des catégories abélliennes. Bull. Soc. Math. France 90 (1962), 323–448.MathSciNetGoogle Scholar
  3. 3.
    R. Gordon and J. C. Robson, “Drull dimension”, Memoir Amer. Math. Soc. 133 (1973).Google Scholar
  4. 4.
    R. Gordon and J. C. Robson, The Gabriel dimension of a module, J. Algebra 29 (1974), 459–473.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. V. Jategaonkar, Jacobson's conjecture and moduels over fully bounded noetherian rings, J. Algebra, 30 (1974), 103–121.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. C. McConnell and J. C. Robson, Homomorphisms and extensions of modules over some differential operator rings, J. Algebra, 26 (1973), 319–342.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Popescu, “Abelian categories with applications to rings and modules” Academic Press, 1973.Google Scholar
  8. 8.
    J. C. Robson, Pri-rings and ipri-rings, Oxford Quarterly J. or Math. 18 (1967), 125–145.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    -, Noncommutative Dedekind rings, J. Algebra 9 (1968), 249–265.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    -, A Note on Dedekind prime rings, Buld. London Math. Soc. 3 (1971), 42–46.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    -, Idealizers and hereditary noetherian prime rings, J. Algebra 22 (1972), 45–81.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. C. Robson, The coincidence of idealizer subrings, J. London Math. Soc. 10 (1975).Google Scholar
  13. 13.
    J. T. Stafford, Completely faithful modules and ideals of simple noetherian rings, Bull. London Math. Soc. (to appear).Google Scholar
  14. 14.
    R. G. Swan, “Algebraic K-theory” Springer-Verlag Lecture Notes in Math. 76 (1968).Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. C. Robson
    • 1
  1. 1.University of LeedsLeeds

Personalised recommendations