Advertisement

Sous-espaces de weierstrass

  • Jean-Luc Stehle
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 482)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R.C. GUNNING. Lectures on Riemann Surfaces, Princeton, 1966.Google Scholar
  2. [2]
    A. HURWITZ. Ueber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41, 1893, 403–442.MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. KOBAYASHI. Geometry of bounded domains, Trans. Amer. Math. Soc. 92, 1959, 267–290.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. LEWITTES. Differentials and metrics on Riemann surfaces, Trans. Amer. Math. Soc. 139, 1969, 311–318.MathSciNetMATHGoogle Scholar
  5. [5]
    M. NOETHER. Ueber einen Satz aus der Theorie der algebraischen Functionen, Crelle Journ. für die Math. 92, 1882, 301–303.Google Scholar
  6. [6]
    M. NOETHER. Beweis und Erweiterung eines algebraisch-functionentheoretischen Satzes des Herrn Weierstrass, Crelle Journ. für die Math. 97, 1884, 224–229.MathSciNetGoogle Scholar
  7. [7]
    R.H. OGAWA. On the points of Weierstrass in dimensions greater than one, Trans. Amer. Math. Soc. 184, 1973, 401–417.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. PALAIS. Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies no57, Princeton, 1965.Google Scholar
  9. [9]
    J.-L. STEHLE. Variétés analytiques compactes, Cours de troisième cycle 1973/74 et 1974/75 polycopié, Université Paris VII.Google Scholar
  10. [10]
    K. WEIERSTRASS. Mathematische Werke.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Jean-Luc Stehle

There are no affiliations available

Personalised recommendations