Skip to main content

Atomistic Monte Carlo simulation and continuum mean field theory of the structure and equation of state properties of alkane and polymer melts

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

A continuum mean field approach based on Generalized Flory Theory and the Polymer Reference Interaction Site Model is developed to describe the structural and equation of state properties of normal alkane liquids and linear polyethylene melts. Efficient Monte Carlo simulations based on a new algorithm that employs concerted rotations around up to seven consecutive skeletal bonds along a chain are also conducted on the same systems. A realistic united-atom model is chosen to describe the geometry and energetics of the molecules and used throughout the study. Comparisons between the simulations and experimental thermodynamic and structural results are good and those between the mean field theory and the exact simulation results are reasonable. A method is described for quickly sampling the conformation of unperturbed chains in continuous space. The statistics of these chains compare very well with conformationally equilibrated chain statistics from the bulk simulation; this provides a confirmation of Flory's Random Coil Hypothesis. The need for improving the mean field theory and for enhancing the equilibration rate of the Monte Carlo simulations are identified. A new neighbor-list scheme is introduced for use in polymer Monte Carlo simulations.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Dickman R, Hall C (1986) J Chem Phys 85: 4108

    Article  CAS  Google Scholar 

  2. Honnell K, Hall CK (1989) J Chem Phys 90: 1841

    Article  CAS  Google Scholar 

  3. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  4. Schweizer KS, Curro JG (1987) Phys Rev Lett 58: 246

    Article  CAS  Google Scholar 

  5. Curro JG, Schweizer KS (1987) Macromolecules 20: 1928

    Article  CAS  Google Scholar 

  6. Honnell KG, McCoy JD, Curro JG, Schweizer KS, Narten AH, Habenschuss A (1991) J Chem Phys 94: 4659

    Article  CAS  Google Scholar 

  7. Chandler D (1982) In: Montroll E, Lebowitz J (eds) The liquid state of matter: Fluids, simple and complex, North Holland, p 275 (Studies in Statistical Mechanics, vol VIII)

    Google Scholar 

  8. Yethiraj A, Hall C (1991) J Chem Phys 95: 1999

    Article  CAS  Google Scholar 

  9. Yethiraj A, Hall C (1991) J Chem Phys 95: 8494

    Article  CAS  Google Scholar 

  10. Curro JG, Schweizer KS, Grest GS, Kremer K (1989) J Chem Phys 91: 1357

    Article  CAS  Google Scholar 

  11. Allen M, Tildesley D (1987) Computer Simulation of Liquids, Oxford Science Publications, Oxford

    Google Scholar 

  12. Rigby D, Roe R-J (1987) J Chem Phys 87: 7285

    Article  CAS  Google Scholar 

  13. Rigby D, Roe R-J (1988) J Chem Phys 89: 5280

    Article  CAS  Google Scholar 

  14. Rigby D, Roe R-J (1989) Macromolecules 22: 2259

    Article  CAS  Google Scholar 

  15. Brown D, Clarke JHR (1991) Comput Phys Commun 62: 360

    Article  CAS  Google Scholar 

  16. Brown D, Clarke JHR (1991) Macromolecules 24: 2075

    Article  CAS  Google Scholar 

  17. Takeuchi H, Roe R-J (1991) J Chem Phys 94: 7446

    Article  CAS  Google Scholar 

  18. Takeuchi H, Roe R-J (1991) J Chem Phys 94: 7458

    Article  CAS  Google Scholar 

  19. Boyd RH, Pant PVK (1991) Macromolecules 24: 6325

    Article  CAS  Google Scholar 

  20. Pant PVK, Han J, Smith GD, Boyd RH (1993) J Chem Phys 99: 597

    Article  CAS  Google Scholar 

  21. Yoon DY, Smith GD, Matsuda T (1993) J Chem Phys 98: 10037

    Article  CAS  Google Scholar 

  22. Smith GD, Yoon DY (1993) J Chem Phys, submitted

    Google Scholar 

  23. Vacatello M, Avitabile G, Corradini P, Tuzi A (1980) J Chem Phys 73: 548

    Article  CAS  Google Scholar 

  24. Boyd RH (1989) Macromolecules 22: 2477

    Article  CAS  Google Scholar 

  25. de Pablo JJ, Laso M, Suter UW (1992) J Chem Phys 96: 2395

    Article  Google Scholar 

  26. Siepmann JI, Frenkel D (1992) Molec Phys 75: 59

    Article  CAS  Google Scholar 

  27. Dodd LR, Boone TD, Theodorou DN (1993) Molec Phys 78: 961

    Article  CAS  Google Scholar 

  28. Leontidis EM, de Pablo JJ, Laso M, Suter UW (1993) Submitted to Advan Polym Sci

    Google Scholar 

  29. Gō N, Scheraga HA (1976) Macromolecules 9: 535

    Article  Google Scholar 

  30. Theodorou DN, Boone TD, Dodd LR, Mansfield KF (1992) Makromol Chem, Theory Simul 2: 191

    Article  Google Scholar 

  31. de Pablo JJ (1992) Personal Communication

    Google Scholar 

  32. Ryckaert JP, Bellemans A (1975) Chem Phys Lett 30: 123

    Article  CAS  Google Scholar 

  33. Theodorou DN, Suter UW (1985) Macromolecules 18: 1467

    Article  CAS  Google Scholar 

  34. Mansfield KF, Theodorou DN (1990) Macromolecules 23: 4430

    Article  CAS  Google Scholar 

  35. Dodd LR, Theodorou DN (1992) Polym Prepr (Am Chem Soc, Div Polym Chem) 33: 645

    CAS  Google Scholar 

  36. Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New York

    Google Scholar 

  37. Ciccotti G, Ryckaert J (1986) Comput Phys Rep 4: 345, Appendix A by H.J.C. Berendsen

    Google Scholar 

  38. Dee G, Ougizawa T, Walsh D (1992) Polymer 33: 3462

    Article  CAS  Google Scholar 

  39. Gillan M (1979) Molec Phys 38: 1781

    Article  CAS  Google Scholar 

  40. Habenschuss A, Narten A (1990) J Chem Phys 92: 5692

    Article  CAS  Google Scholar 

  41. Ertl H, Dullien F (1973) AIChE J 19: 1215

    Article  CAS  Google Scholar 

  42. Barker J, Henderson D (1967) J Chem Phys 47: 4714

    Article  CAS  Google Scholar 

  43. Yethiraj A, Curro JG, Schweizer KS, McCoy JD (1993) J Chem Phys 98: 1635

    Article  CAS  Google Scholar 

  44. Curro JG, Yethiraj A, Schweizer KS, McCoy JD, Honnell KG (1993) Macromolecules 26: 2655

    Article  CAS  Google Scholar 

  45. Dodd LR, Theodorou DN (1991) Molec Phys 72: 1313

    Article  CAS  Google Scholar 

  46. Grest GS, Dünweg B, Kremer K (1989) Comput Phys Commun 55: 269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Dodd .

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Dodd, L.R., Theodorou, D.N. (1994). Atomistic Monte Carlo simulation and continuum mean field theory of the structure and equation of state properties of alkane and polymer melts. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080201

Download citation

  • DOI: https://doi.org/10.1007/BFb0080201

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics