Skip to main content

MD simulation study of glass transition and short time dynamics in polymer liquids

  • Chapter
  • First Online:
Atomistic Modeling of Physical Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

Molecular dynamics simulations have been performed on models of polyethylene (and n-alkane) liquids at their realistic bulk densities. The united atom approximation has been adopted. On stepwise cooling of the system under a constant pressure, the temperature coefficient of specific volume changes abruptly at a temperature mimicking the glass transition phenomenon observed in laboratory. The results of the simulation runs, lasting for the order of nanoseconds, were analyzed to investigate the short time dynamics of bond reorientation. The distribution of bond reorientation angle is much broader than is expected from a rotational diffusion with a single diffusion coefficient. Similarly the time-correlation function of bond reorientation is non-exponential and can be fitted well by the stretched exponential function. Attempts to explain these behaviors by assuming a superposition of rotational diffusion processes is met with many contradictions. Explanation is instead offered on the basis of the observed anisotropy of the bond reorientation motion, i.e., the finding that the chain axis reorients much more slowly than a vector attached perpendicular to the chain axis. Such anisotropy results from the intramolecular and intermolecular constraints to the motion of the chain imposed by the segments in the neighborhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rigby D, Roe RJ (1987) J Chem Phys 87: 7285

    Article  CAS  Google Scholar 

  2. Rigby D, Roe RJ (1988) J Chem Phys 89: 5280

    Article  CAS  Google Scholar 

  3. Rigby D, Roe RJ (1989) J Macromolecules 22: 2259

    Article  CAS  Google Scholar 

  4. Rigby D, Roe RJ (1990) J Macromolecules 23: 5312

    Article  CAS  Google Scholar 

  5. Takeuchi H, Roe RJ, Mark JE (1990) J Chem Phys 93: 9042

    Article  CAS  Google Scholar 

  6. Rigby D, Roe RJ (1991) In: Roe RJ (ed) Computer simulation of polymers. Prentice Hall, Englewood Cliffs, NJ, p 79

    Google Scholar 

  7. Takeuchi H, Roe RJ (1991) J Chem Phys 94: 7446

    Article  CAS  Google Scholar 

  8. Takeuchi H, Roe RJ (1991) J Chem Phys 94: 7458

    Article  CAS  Google Scholar 

  9. Roe RJ, Rigby D, Furuya H, Takeuchi H (1992) Comp Polymer Sci 2: 32

    CAS  Google Scholar 

  10. Weber TA, Helfand E (1979) J Chem Phys 71: 4760

    Article  CAS  Google Scholar 

  11. Verlet L (1967) Phys Rev 159: 98

    Article  CAS  Google Scholar 

  12. Pant PVK, Boyd RH (1992) Macromolecules 25: 494

    Article  CAS  Google Scholar 

  13. Toxvaerd S (1990) J Chem Phys 93: 4290

    Article  CAS  Google Scholar 

  14. Theodorou DN, Suter UW (1985) Macromolecules 18: 1467

    Article  CAS  Google Scholar 

  15. Flory PJ (1969) Statistical mechanics of chain molecules. Wiley-Interscience, New York

    Google Scholar 

  16. Clarke JHR, Brown D (1989) Mol Sim 3: 27

    Google Scholar 

  17. Fox H, Andersen HC (1984) J Phys Chem 88: 4019

    Article  CAS  Google Scholar 

  18. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edition. Wiley, New York

    Google Scholar 

  19. Bero CA, Plazek DJ (1991) J Polymer Sci, Part B, Polymer Phys 29: 39

    Article  CAS  Google Scholar 

  20. Ichimura I, Ogita N, Ueda A (1978) Japan J Phys Soc 45: 252

    Article  CAS  Google Scholar 

  21. Hiwatari Y (1982) J Chem Phys 76: 5502

    Article  CAS  Google Scholar 

  22. Geil PH (1976) J Macromol Sci, Phys Ed 12: 173

    Google Scholar 

  23. Wang CS, Yeh GSY (1978) J Macromol Sci, Phys Ed 15: 107

    Google Scholar 

  24. Pechhold WR, Grossman HP (1979) Faraday Disc Chem Soc 68: 58

    Article  Google Scholar 

  25. Flory PJ (1979) Faraday Disc Chem Soc 68: 14

    Article  Google Scholar 

  26. Patterson GD, Kennedy AP, Latham JP (1977) Macromolecules 10: 667

    Article  CAS  Google Scholar 

  27. Fischer EW, Strobl GR, Dettenmaier M, Stamm M, Steidle H (1979) Faraday Disc Chem Soc 68: 26

    Article  Google Scholar 

  28. Jarry JP, Monnerie L (1978) J Polymer Sci, Polymer Phys Ed 16: 443

    Article  CAS  Google Scholar 

  29. Thulstrup EW, Michl J (1982) J Am Chem Soc 104: 5594

    Article  CAS  Google Scholar 

  30. Kornfield JA, Fuller GG, Pearson DS (1989) Macromolecules 22: 1334

    Article  CAS  Google Scholar 

  31. Jacobi MM, Stadler R, Gronski W (1986) Macromolecules 19: 2884

    Article  CAS  Google Scholar 

  32. Sotta P, Deloche B, Herz J, Lapp A, Durand D, Rabadeux J-C (1987) Macromolecules 20: 2769

    Article  CAS  Google Scholar 

  33. Schmidt C, Wefing S, Blümich B, Spiess HW (1986) Chem Phys Lett 130: 84

    Article  CAS  Google Scholar 

  34. Wefing S, Kaufmann S, Spiess HW (1988) J Chem Phys 89: 1234

    Article  CAS  Google Scholar 

  35. Böttcher CJF, Bordewijk P (1978) Theory of electric polarization, Vol II, Elsevier, New York, Chap 11

    Google Scholar 

  36. Williams G (1979) Chem Soc Rev 7: 89

    Article  Google Scholar 

  37. Williams G, Watts DC (1977) Trans Faraday Soc 66: 80

    Article  Google Scholar 

  38. Ivanov EN (1963) Zh Eksp Teor Fiz 45: 1509 [Sov Phys JETP (1964) 18: 1041]

    CAS  Google Scholar 

  39. Roberts PH, Ursell DD (1960) Proc Roy Soc London A252: 317

    Google Scholar 

  40. Cukier RI, Lakatos-Lindenberg K (1972) J Chem Phys 57: 3427

    Article  CAS  Google Scholar 

  41. Cukier RI (1974) J Chem Phys 60: 734

    Article  CAS  Google Scholar 

  42. Anderson JE, Ullman R (1967) J Chem Phys 47: 2178

    Article  CAS  Google Scholar 

  43. Silescu H (1971) J Chem Phys 54: 2110

    Article  Google Scholar 

  44. Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) J Polymer Sci, Polymer Phys Ed 17: 1097

    Article  CAS  Google Scholar 

  45. Provencher SW (1982) Comp Phys Comm 27: 213

    Article  Google Scholar 

  46. Lindsey CP, Patterson GD (1980) J Chem Phys 73: 3348

    Article  CAS  Google Scholar 

  47. Weber TA, Helfand E (1983) J Phys Chem 87: 2881

    Article  CAS  Google Scholar 

  48. Bahar I, Erman B (1988) J Chem Phys 88: 1228

    Article  CAS  Google Scholar 

  49. Bahar I, Erman B (1987) Macromolecules 20: 1368

    Article  CAS  Google Scholar 

  50. Doi M, Edwards F (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  51. Wang CC, Pecora R (1980) J Chem Phys 72: 5333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Roe, RJ. (1994). MD simulation study of glass transition and short time dynamics in polymer liquids. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080198

Download citation

  • DOI: https://doi.org/10.1007/BFb0080198

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics