Skip to main content

Atomistic dynamics of macromolecular crystals

  • Chapter
  • First Online:
Atomistic Modeling of Physical Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

In this article we review recent computational results on the dynamics of macromolecular crystals. From these studies it has been demonstrated that conformational defects can be created at temperatures as much as 100 K below the melting point of crystalline polyethylene and the concentration of the defects continues to increase (exponentially) with temperature, ultimately leading to a disordered crystal along the polymer chains (CONDIS crystal). Although the rate of formation of conformational defects is relatively high, approximately 1×1010 s−1 at 350 K, these defects do not by themselves lead to any macroscopic motion that could give rise, for example, to lamellar thickening. The mechanism appears to involve coupling of the large-amplitude torsional motions with the transverse and longitudinal vibrations of the crystal lattice, which can subsequently lead to the formation of short-range twists in the chains (twist defects). Defects like the twist can, under the correct conditions, move coherently toward the end of the crystal, thereby causing a chain diffusion process that leads to lamellar thickening or deformation processes. For smaller systems such as paraffins, disorder occurs by a collective twisting (so-called rotator phase) of the chains, which is not strongly influenced by conformational defects. The hexagonal or pseudo-hexagonal structure of the asymmetric motifs is caused by a dynamic multidomain arrangement of the twisting chains. Overall, a more accurate description of the thermodynamic, spectroscopic, and kinetic behavior is possible and gives a new understanding of the deformation, relaxation, annealing, and motion in macromolecular crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Wunderlich B, Möller M, Grebowicz J, Baur H (1988) Conformational motion and disorder in low and high molecular mass crystals. Springer, Berlin Heidelberg New York (Adv. Polym. Sci. 87)

    Google Scholar 

  2. Noid DW, Sumpter BG, Wunderlich B (1990) Molecular dynamics simulation of the condis state of polyethylene. Macromolecules 23: 664

    Article  CAS  Google Scholar 

  3. Noid DW, Sumpter BG, Varma-Nair M, Wunderlich B (1989) Molecular dynamics results for a polyethylene-like crystal. Makromol Chem Rapid Commun 10: 377

    Article  CAS  Google Scholar 

  4. Sumpter BG, Noid DW, Wunderlich B (1990) Theoretical studies of the effects of anharmonicity on polymer dynamics: temperature dependence of heat capacity. Polymer 31: 1254

    Article  CAS  Google Scholar 

  5. Noid DW, Pfeffer GA (1989) Dispersion curves from short time molecular dynamics simulation: stressed polyethylene results. J Polymer Sci Part B: Polymer Phys Ed 27: 2321

    Article  CAS  Google Scholar 

  6. Noid DW, Sumpter BG, Wunderlich B (1990) Molecular dynamics calculation of the density of states for poly(ethylene): collective versus local modes. Anal Chem Acta 135: 143

    Article  Google Scholar 

  7. Roy R, Sumpter BG, Noid DW, Wunderlich B (1990) Estimation of dispersion relations from short-duration molecular dynamics simulations. J Phys Chem 94: 5720

    Article  CAS  Google Scholar 

  8. Roy R, Sumpter BG, Pfeffer GA, Gray SK, Noid DW (1991) Novel methods for spectal analysis. Phys Rep 205: 109

    Article  CAS  Google Scholar 

  9. Pfeffer GA, Noid DW (1990) Stress-induced infrared frequency shifts in polyethylene, Macromolecules 23: 2573

    Article  CAS  Google Scholar 

  10. Pfeffer GA, Sumpter BG, Noid DW (1992) Conformational changes in polyethylene model under tension and compression. Polym Engr & Sci 32: 1278

    Article  CAS  Google Scholar 

  11. Noid DW, Sumpter BG, Wunderlich B (1991) Molecular dynamics simulation of twist motion in polyethylene. Macromolecules 24: 4148

    Article  CAS  Google Scholar 

  12. Noid DW, Sumpter BG, Liang GL, Wunderlich B (1992) Molecular dynamics simulations of electric field induced motion in crystalline polyethylene, in Plastics Shaping the Future. Proceeding of the SPE 50th Annual Technical Conference & Exhibition, p 1982.

    Google Scholar 

  13. Noid DW, Sumpter BG and Wunderlich B (1990) Molecular dynamics studies of the lamellar thickening process for polyethylene. Polym Commun 31: 304

    CAS  Google Scholar 

  14. Sumpter BG, Noid DW, Wunderlich B (1990) Computer experiments on the internal dynamics of crystalline polyethylene: mechanistic details of conformational disorder. J Chem Phys 93: 6876

    Google Scholar 

  15. Sumpter BG, Noid DW, Wunderlich B (1992) Computational experiments on the motion and generation of defects in polymer crystals. Macromolecules 25: 7247

    Article  CAS  Google Scholar 

  16. Sumpter BG, Noid DW, Wunderlich B (1990) Molecular dynamics study of the rate of melting of a crystalline polyethylene molecule: effect of chain folding. Macromolecules 23: 4671

    Article  CAS  Google Scholar 

  17. Noid DW, Pfeffer GA, Cheng SZD, Wunderlich B (1988) Computer simulation of the melting process in linear macromolecules. Macromolecules 21: 3482

    Article  CAS  Google Scholar 

  18. Xenopoulos A, Noid DW, Sumpter BG, Wunderlich B (1990) The correlation of rotational isomers in polyethylene-like crystals. Makromol. Chem. 191: 2261

    Article  CAS  Google Scholar 

  19. Wunderlich B, Xenopoulos A, Noid DW, Sumpter BG (1991) Defect generation and motion in polyethylene-like crystals, analyzed by simulation with supercomputers. Mat Res Soc Proc 209: 147

    CAS  Google Scholar 

  20. Noid DW, Sumpter BG, Wunderlich B, Pfeffer GA (1990) molecular dynamics simulations of polymers: methods for optimal Fortran programming. J Comp Chem 11: 236

    Article  CAS  Google Scholar 

  21. Noid DW, Sumpter BG, Cox RL (1991) Computational strategies for molecular dynamics simulations of polymer processes: numerical integration schemes. J Comp Polym Sci 1: 161

    CAS  Google Scholar 

  22. Liang GL, Noid DW, Sumpter BG, Wunderlich B (1993) Dynamics of a paraffin crystal. Makromol Chem Theory Simulation 2: 245

    Article  CAS  Google Scholar 

  23. (1993) Molecular dynamics simulation of the hexagonal structure of crystals with long methylene sequences. J. Poly. Sci. B., Poly. Phys. 31: 1909 and

    Google Scholar 

  24. (1993) Atomistic details of disordering processes in superheated polymethylene crystals. Acta Polym. 44: 219

    Google Scholar 

  25. Klein ML (1985) Ann Rev Phys Chem 36: 525; Hoover WG (1983) Ann Rev Phys Chem 34: 103

    Article  CAS  Google Scholar 

  26. Sumpter BG, Noid DW, Wunderlich B (1993) Computer simulation and modeling of polymeric crystals. Trends Polym Sci 1: 160

    CAS  Google Scholar 

  27. Hertz J, Krogh A, Polymer RG (1991) Introduction to the theory of neural computation, Addison-Wesley, Redwood City, CA; Zurada JM (1992) Introduction to artificial neural systems, West, New York

    Google Scholar 

  28. Sumpter BG, Getino C, Noid DW (1992) A neural network approach to the study of internal energy flow in molecular systems. J Chem Phys 97: 293

    Article  CAS  Google Scholar 

  29. Noid, Darsey JA (1991) Neural net simulation of polymer dynamics. J Comp Polymer Sci 1: 157

    CAS  Google Scholar 

  30. Wunderlich B (1973, 1976, and 1980) Macromolecular physics, Vols. I–III; Academic Press: New York

    Google Scholar 

  31. Brandrup J, Immergut EH (1989) Polymer Handbook, J. Wiley: New York

    Google Scholar 

  32. Kim Y, Strauss HL, Snyder RG (1989) J Phys Chem 93: 7520

    Article  CAS  Google Scholar 

  33. Jin Y, Wunderlich B (1991) The heat capacity of paraffins and polyethylene. J Phys Chem 95: 9000

    Article  CAS  Google Scholar 

  34. Liang GL, Noid DW, Sumpter BG, Wunderlich B, (1993) Dynamics and structure of polymethylene crystals with explicit hydrogen atoms. J. Comp. Poly. Sci. 3: 101

    CAS  Google Scholar 

  35. Sumpter BG, Voth GA, Noid DW, Wunderlich B (1991) Infrared laser-induced chaos and conformational disorder in a model polymer crystal: melting vs. ablation. J Chem Phys 93: 6081

    Article  Google Scholar 

  36. Gelb A, Sumpter BG, Noid DW (1990) Computer simulation of molecular collisions with a polymer surface. J Phys Chem 94: 809; (1990) Molecular dynamics calculations of energy transfer to polymer surfaces. Chem Phys Lett 169: 103

    Article  CAS  Google Scholar 

  37. Sumpter BG, Getino C, Noid DW, Wunderlich B (1993) Computer simulations of atomic force microscopy: crystalline polymers and the effects of surface contaminants. Makromol Chem Theory Simul 2: 55

    Article  CAS  Google Scholar 

  38. Annis BK, Reffner JA, Wunderlich B (1992) Atomic force microscopy of extended-chain crystals of polyethylene. J Polymer Sci Part B: Polymer Physics 31: 93; Annis BK, Noid DW, Sumpter BG, Reffner JA, Wunderlich B (1992) Application of Atomic Force Microscopy (AFM) to a block copolymer and an extended chain polyethylene. Macromol Chem Rapid Commun 13: 169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Sumpter, B.G., Noid, D.W., Liang, G.L., Wunderlich, B. (1994). Atomistic dynamics of macromolecular crystals. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080196

Download citation

  • DOI: https://doi.org/10.1007/BFb0080196

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics