Skip to main content

Existence and approximation of weak solutions of the Stefan problem with nonmonotone nonlinearities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 506))

Abstract

Consider the equation, in the distribution sense, for the temperature in a two-phase multidimensional Stefan problem

$$\frac{{\partial u}}{{\partial t}} - \nabla .(k(u) \nabla u) + g(u) = f$$
((1))

on a space-time domain D=(O,T) × Ω with specified initial and boundary conditions and enthalpy discontinuity across the free boundary. Here the conductivity coefficient k is a positive function with compact range, defined and continuous on R except at O, and g is a Lipschitz body heating function, frequently encountered in welding problems, which is not assumed monotone. (We may take g such that g(u)u≥0).

Implicit two level time discretizations are employed in transformed versions of (1), giving a (finite) sequence of nonlinear elliptic boundary value problems (for each δt) which are solved by a Galerkin method. A subsequence of the step functions constructed on D is shown to converge weakly to a weak solution of the transformed equation. If, in addition, g is monotone, the entire sequence is strongly convergent to the unique solution.

Research supported by a grant from the Science Research Council, at Oxford University Computing Laboratory, 19 Parks Road, Oxford, OX1 3PL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, New Jersey, 1965.

    MATH  Google Scholar 

  2. D.R. Atthey, A finite difference scheme for melting problems, J. Inst. Math. Appl. 13 (1974), 353–366.

    Article  MathSciNet  Google Scholar 

  3. H. Brezis, On some degenerate non linear parabolic equations, in Nonlinear Functional Analysis (F.E. Browder, editor) Part I, American Mathematical Society, Proceedings of Symposia in Pure Mathematics, Vol. 18, Providence, R.I., 1970, pp. 28–38.

    Google Scholar 

  4. J.F. Ciavaldini, Résolution Numerique d’un Probleme de Stefan a Deux Phases, Thesis, University of Rennes, France, 1972.

    Google Scholar 

  5. J. Douglas, J.R. Cannon and C.D. Hill, A multi-boundary Stefan problem and the disappearance of phases, J.Math.Mech. 17 (1967), 21–35.

    MathSciNet  MATH  Google Scholar 

  6. G. Duvaut, The solution of a two-phase Stefan problem by a variational inequality, in Moving Boundary Problems in Heat Flow and Diffusion (J.R. Ockendon and W.R. Hodgkins, editors), Clarendon Press, Oxford, 1975, pp. 173–181.

    Google Scholar 

  7. S.D. Fisher and J.W. Jerome, Minimum Norm Extremals in Function Spaces with Applications to Classical and Modern Analysis, Springer Lecture Series in Mathematics, Heidelberg, 1975.

    Google Scholar 

  8. A. Friedman, The Stefan problem in several space variables, Trans. Amer. Math. Soc. 133 (1968), 51–87.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Friedman, One dimensional Stefan problems with nonmonotonic free boundary, Trans. Amer. Math. Soc. 133 (1968), 89–114.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.W. Jerome, On n-widths in Sobolev spaces and applications to elliptic boundary value problems, J. Math. Anal. Appl. 29 (1970), 201–215.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.L. Kamenomostskaja, On the Stefan problem, Mat. Sb. 53 (1961), 489–514.

    MathSciNet  Google Scholar 

  12. J.L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  13. G.H. Meyer, Multidimensional Stefan Problems, SIAM J. Numer.Anal. 10 (1973), 522–538.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  15. J.R. Ockendon and W.R. Hodgkins (editors), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975.

    Google Scholar 

  16. O.A. Oleinik, A method of solution of the general Stefan problem, Soviet Math. Dokl. 1 (1960), 1350–1354.

    MathSciNet  Google Scholar 

  17. P.A. Raviart, Sur l’approximation de certaines équations d’évolution linéaires et non linéaires, J.Math.Pures Appl. (9) 46 (1967), 11–183.

    MathSciNet  MATH  Google Scholar 

  18. A.B. Tayler, The mathematical formulation of Stefan problems in Moving Boundary Problems, in Heat Flow and Diffusion, loc.cit., J. Math. Pures Appl. (9) 46 (1967), pp. 120–137.

    Google Scholar 

Download references

Authors

Editor information

G. Alistair Watson

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Jerome, J.W. (1976). Existence and approximation of weak solutions of the Stefan problem with nonmonotone nonlinearities. In: Watson, G.A. (eds) Numerical Analysis. Lecture Notes in Mathematics, vol 506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0080121

Download citation

  • DOI: https://doi.org/10.1007/BFb0080121

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07610-0

  • Online ISBN: 978-3-540-38129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics