Approximation methods for expanding operators

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 506)


An attempt is made in this report to give a very rough survey on expanding operators. The phenomenon of expanding operators T seems to appear very often. Some classical fixed point theorems cover cases with expanding operators; numerical examples for these are given. Furthermore, there exists a fixed point theorem of Krasnoselskii, which is applicable to nonlinear integral equations of Hammerstein-type under certain conditions: for this numerical examples are given. But usually it is not yet possible to get exact inclusion theorems for solutions u of u=Tu.

A general numerical procedure, working in the last mentioned cases also for not well posed problems, and problems with several solutions, is described and applied in concrete cases. It was not the intention of this paper to give the greatest possible generality but to illustrate the situation by many examples. It is hoped that more mathematicians than hitherto will deal with expanding operators and that there will be much success in this new field of research in the future.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohl, E. [74]: Monotonie, Lösbarkeit und Numerik bei Operator-gleichungen, Springer, Berlin 1974, 255 p.CrossRefzbMATHGoogle Scholar
  2. Bredendiek, E. [69]: Simultanapproximation, Arch. Rat. Mech. Anal., 33, 307–330 (1969).MathSciNetCrossRefGoogle Scholar
  3. Bredendiek, E. and L. Collatz [75]: Simultanapproximation bei Randwertaufgaben, to appear in Internat. Ser. Num. Math., Birkhäuser, 1975.Google Scholar
  4. Collatz, L. [66]: Functional Analysis and Numerical Analysis, Academic Press 1966, 473 p.Google Scholar
  5. Collatz, L. [71]: Some applications of functional analysis, particularly to nonlinear integral equations, Proc. Nonlinear functional analysis and applications, Madison, Academic Press, 1971, 1–43.CrossRefGoogle Scholar
  6. Collatz, L. und W. Krabs [73]: Approximationstheorie, Teubner, Stuttgart 1973, 208 p.CrossRefzbMATHGoogle Scholar
  7. Flügge, H. [75]: Zur Tschebyscheff-Approximation mit Funktionen mehrerer Variablen, Dissertation Universität Hamburg 1975, 71 p.Google Scholar
  8. Krasnoselskii, M.A. [64]: Positive solutions of operator equations, P. Noordhoff, Groningen 1964.Google Scholar
  9. Reissig, R., G. Sansone and R. Conti [69],: Nichtlineare Differentialgleichungen höherer Ordnung, Roma 1969, 738 p.Google Scholar
  10. Schröder, J. [56]: Das Iterationsverfahren bei allgemeinem Abstandsbegriff, Math. Z. 66, 111–116 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  11. Smart, D.R. [74]: Fixed point theorems, Cambridge Univ. Press (1974) 93 p.Google Scholar
  12. Sprekels, J. [75]: Einige Existenz-und Einschließungssätze für Fixpunkte expandierender Integraloperatoren, erscheint demnächst.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

There are no affiliations available

Personalised recommendations