Advertisement

Points rationnels des courbes modulaires x0(N)

d’après [7], [9]
  • Barry Mazur
  • Jean-Pierre Serre
14, 15, 16 Juin 1975
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    P. DELIGNE et M. RAPOPORT—Les schémas de modules de courbes elliptiques, Lecture Notes in Math., no 349, p. 143–316, Springer, 1973.zbMATHMathSciNetGoogle Scholar
  2. [2]
    V.A. DEMJANENKO—Sur la torsion des courbes elliptiques [en russe], Izv. Akad. N. CCCP, 35 (1971), p. 280–307 [MR 44, 2755].zbMATHMathSciNetGoogle Scholar
  3. [3]
    E. HECKE—Mathematische Werke, 2ème édition, Göttingen, 1970.Google Scholar
  4. [4]
    N. KATZ—p-adic properties of modular schemes and modular forms, Lecture Notes in Math. n0 350, p. 69–190, Springer, 1973.zbMATHCrossRefGoogle Scholar
  5. [5]
    M. KOIKE—On the congruences between Eisenstein series and cusp forms, à paraître.Google Scholar
  6. [6]
    D. KUBERT—Universal bounds on the torsion of elliptic curves, à paraître.Google Scholar
  7. [7]
    B. MAZUR—Modular curves and the Eisenstein ideal, en préparation.Google Scholar
  8. [8]
    A. NÉRON—Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S., 21 (1964), p. 361–483 [MR 31, 3424].Google Scholar
  9. [9]
    A. OGG—a) Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., 24 (1973), AMS, Providence, p. 221–231. b) Diophantine equations and modular forms, Bull. AMS, 81, (1975), p. 14–27.Google Scholar
  10. [10]
    A. OGG—Hyperelliptic modular curves, Bull. Soc. math. France, 102 (1974), p. 449–462.zbMATHMathSciNetGoogle Scholar
  11. [11]
    M. RAYNAUD—Spécialisation du foncteur de Picard, Publ. Math. I.H.E.S., 38 (1970), p. 27–76.zbMATHMathSciNetGoogle Scholar
  12. [12]
    K. RIBET—Endomorphisms of semi-stable abelian varieties over number fields, Annals of Math., 101 (1975), p. 555–562.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.-P. SERRE— p-torsion des courbes elliptiques (d’après Y. MANIN), Séminaire Bourbaki, 22e année, 1969/70, exposé 380, Lecture Notes in Math. no 180, Springer, 1971.Google Scholar
  14. [14]
    G. SHIMURA—Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, no 11, Tokyo-Princeton, 1971.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Barry Mazur
  • Jean-Pierre Serre

There are no affiliations available

Personalised recommendations