Formes automorphes et séries de dirichlet

d’après R. P. Langlands
  • Armand Borel
14, 15, 16 Juin 1975
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. ARTIN and J. TATE—Class Field Theory, Benjamin, N. Y., 1967MATHGoogle Scholar
  2. [2]
    A. BOREL—Opérateurs de Hecke et Fonctions Zêta, Sém. Bourbaki, 18e année, 1965/66, Exp. 307, Benjamin, N. Y.Google Scholar
  3. [3]
    W. CASSELMAN—On representations of GL2 and the arithmetic of modular curves, Modular Functions of One Variable II, Springer Lecture Notes 349 (1973), 107–142.MATHMathSciNetGoogle Scholar
  4. [4]
    P. DELIGNE—Formes modulaires et représentations ℓ-adiques, Sém. Bourbaki, 1968/69, Exp. 355, Springer Lecture Notes 179, 139–186.Google Scholar
  5. [5]
    P. DELIGNE—Les Constantes des Equations Fonctionnelles, Sém. Delange-Pisot-Poitou, lle année, 1969/70, no 19 bis.Google Scholar
  6. [6]
    P. DELIGNE—Travaux de Shimura, Sém. Bourbaki, 1970/71, Exp. 389, Springer Lecture Notes 244, 123–165.Google Scholar
  7. [7]
    P. DELIGNE—Formes modulaires et représentations de GL2, Modular Functions of One Variable, Springer Lecture Notes 349 (1973), 55–106.MATHMathSciNetGoogle Scholar
  8. [8]
    P. DELIGNE—Les constantes des équations fonctionnelles des fonctions L, ibid., 501–597.MATHMathSciNetGoogle Scholar
  9. [9]
    P. DELIGNE—La conjecture de Weil I, Publ. Math. I.H.E.S., vol. 43 (1974), 273–307.MathSciNetGoogle Scholar
  10. [10]
    P. DELIGNE et J.-P. SERRE—Formes modulaires de poids 1, Annales E.N.S., (4), t. 7 (1974), 507–530.MATHMathSciNetGoogle Scholar
  11. [11]
    K. DOI and H. NAGANUMA—On the functional equation of certain Dirichlet series, Inv. Math. 9 (1969), 1–14.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    V. G. DRINFELD—Modules elliptiques, Math. Sbornik 94 (1974), 594–627.MATHMathSciNetGoogle Scholar
  13. [13]
    S. S. GELBART—Automorphic functions on adele groups, Annals of Math. Studies 83 (1975), Princeton University Press.Google Scholar
  14. [14]
    I. M. GELFAND, M. I. GRAEV and I. I. PIATECKIÎ-ŠAPIRO—Representation theory and automorphic functions, Saunders, Philadelphia 1969.MATHGoogle Scholar
  15. [15]
    I. M. GELFAND and D. A. KAZDAN—Representations of the group GL(n, K) where K is a local field, Inst. for Applied Mathematics, Moscow 1971.Google Scholar
  16. [16]
    R. GODEMENT—Fonctions automorphes et produits eulérines, Sém. Bourbaki, 1968/69, Exp. 349, Springer Lecture Notes 179, 37–53.Google Scholar
  17. [17]
    R. GODEMENT—Notes on Jacquet-Langlands Theory, Institute for Advanced Study, Princeton, N. J., 1970.Google Scholar
  18. [18]
    R. GODEMENT and H. JACQUET—Zeta-Functions of Simple Algebras, Springer Lecture Notes 260, 1972.Google Scholar
  19. [19]
    HARISH-CHANDRA—Automorphic Forms on a Semi-Simple Group, Springer Lecture Notes 62, 1968.Google Scholar
  20. [20]
    H. JACQUET—Automorphic Forms on GL(2), Part II, Springer Lecture Notes 278, 1972.Google Scholar
  21. [21]
    H. JACQUET—Euler products and automorphic forms, Proc. I. C. M. Vancouver.Google Scholar
  22. [22]
    H. JACQUET and R. P. LANGLANDS—Automorphic Forms on GL(2), Springer Lecture Notes 114, 1970.Google Scholar
  23. [23]
    H. JACQUET and J. A. SHALIKA—Hecke theory fox GL(3), Comp. Math. (to appear).Google Scholar
  24. [24]
    R. P. LANGLANDS—On the functional equations satisfied by Eisenstein series, preprint, Yale University.Google Scholar
  25. [25]
    R. P. LANGLANDS—Euler Products, Yale University Press, 1967.Google Scholar
  26. [26]
    R. P. LANGLANDS—Representations of abelian algebraic groups, preprint, Yale University, 1968.Google Scholar
  27. [27]
    R. P. LANGLANDS—Problem in the theory of automorphic forms, in Lectures in Modern Analysis and Applications, Springer Lecture Notes 170 (1970), 18–86.Google Scholar
  28. [28]
    R. P. LANGLANDS—On Artin’s L-functions, in Complex Analysis, Rice Univ. Studies 56 (1970), 23–28.Google Scholar
  29. [29]
    R. P. LANGLANDS—Modular forms and ℓ-adic representations, in Modular Functions of One Variable II, Springer Lecture Notes 349 (1973), 361–500.Google Scholar
  30. [30]
    R. P. LANGLANDS—On the classification of irreducible representations of real algebraic groups, preprint.Google Scholar
  31. [31]
    R. P. LANGLANDS—Some contemporary problems with origins in the Jugendtraum, to appear.Google Scholar
  32. [32]
    A. OGG—Modular Forms and Dirichlet Series, Benjamin Lecture Notes, N. Y., 1968.Google Scholar
  33. [33]
    I. I. PIATECKIÎ-ŠAPIRO—Zeta-functions of modular curves, Modular Functions of One Variable II, Springer Lecture Notes 349, 1973, 317–360.Google Scholar
  34. [34]
    R. A. RANKIN—Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions, I, II, Proc. Cambridge Phil. Soc. 35 (1936), 351–372.MathSciNetCrossRefGoogle Scholar
  35. [35]
    I. SATAKE—Theory of spherical functions on reductive algebraic groups, Publ. Math. I.H.E.S., 18 (1963), 5–69.MathSciNetGoogle Scholar
  36. [36]
    I. SATAKE—Spherical functions and Ramanujan conjecture, in Proc. Symp. Pure Math., 9 (1966), 258–264, A.M.S., Providence, R. I.Google Scholar
  37. [37]
    J.-P. SERRE—Abelian ℓ-Adic Representations, Benjamin Lecture Notes, 1968.Google Scholar
  38. [38]
    J.-P. SERRE—Facteurs Locaux des Fonctions Zêta des Variétés Algébriques (Définitions et Conjectures), Sém. Delange-Pisot-Poitou, lle année, 1969/70, Exp. 19.Google Scholar
  39. [39]
    J. A. SHALIKA and S. TANAKA—On an explicit construction of a certain class of automorphic forms, Amer. J. Math., 91 (1969), 1049–1076.MATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    H. SHIMIZU—On zeta functions of quaternion algebras, Annals of Math., (2) 81 (1965), 166–193.MATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    G. SHIMURA—Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971.Google Scholar
  42. [42]
    G. SHIMURA—Modular forms of half-integral weight, in Modular Functions of One Variable I, Springer Lecture Notes 320 (1973), 57–74.Google Scholar
  43. [43]
    G. SHIMURA—On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3), 31 (1975), 79–98.MATHMathSciNetGoogle Scholar
  44. [44]
    J. TATE—Fourier analysis in number fields and Hecke’s zeta-functions, in Algebraic Number Theory, Cassels and Fröhlich, ed., Thompson Book Co., 1967, pp. 305–347.Google Scholar
  45. [45]
    A. WEIL—Sur la théorie du corps de classes, Jour. Math. Soc. Japan, 3 (1951), 1–35.MATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. WEIL—On a certain type of characters of the idèle-class group of an algebraic number field, Proc. Int. Colloq. on Alg. Number Theory, Tokyo-Nikko, 1955, 1–7.Google Scholar
  47. [47]
    A. WEIL—Ueber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Annalen 168 (1967), 149–167.MATHMathSciNetCrossRefGoogle Scholar
  48. [48]
    A. WEIL—Basic Number Theory, Grundl. der Math. Wiss. 144, Springer, 1967.Google Scholar
  49. [49]
    A. WEIL—Dirichlet Series and Automorphic Forms, Springer Lecture Notes 189, 1971.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Armand Borel

There are no affiliations available

Personalised recommendations