Advertisement

Cohomologie des ouvers de l’espace projectif sur un corps de caractéristique zéro

d’après A. Ogus
  • Lucien Szpiro
16, 17, 18 Novembre 1974
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Générique

  1. [1]
    V. I. DANILOV—On a conjecture of Samuel, Math. U.S.S.R. Sbornic, 10 (1970), 127–137.zbMATHGoogle Scholar
  2. [2]
    W. BARTH—Transplanting cohomology classes in complex projective space, Amer. J. Math., 92 (1970), 951–967.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. GROTHENDIECK—Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, S.G.A.de l’IHRES, 1962, North Holland, 1968.Google Scholar
  4. [4]
    R. HARTSHORNE—Algebraic De Rham cohomology, Manuscripta mathematica, 7 (1972), 125–140.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. HARTSHORNE—On the De Rham cohomololy of algebraic varietes, Pub. Math. de l’I.H.E.S., no 45, à paraître.Google Scholar
  6. [6]
    R. HARTSHORNE—Cohomological dimension of algebraic varietes, Ann. Math., 88 (1968), 403–450.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. HARTSHORNE—Varietes of small codimension in projective space. [An expanded version of a talk presented to the SUMMER meeting of the A.M.S. Missoula, August 1973.] B.A.M.S., 80 (1974), 1017–1032.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R. HARTSHORNE—Subvarietes of small codimension, Lecture notes prepared in connecton with the summer institute on algebraic geometry at Humbolt state university Arcata, California, August 1974 (informally distributed manuscripts and articles should be treated as personnal communication and are not for library use).Google Scholar
  9. [9]
    R. HARTSHORNE and A. OGUS—On the factoriality of local rings of small embedding codimension, Communications in Algebra, 1 (1974).Google Scholar
  10. [10]
    A. HOLME—Embedding obstruction for algebraic varietes, preprint University of Bergen, Norway.Google Scholar
  11. [11]
    S. KLEIMAN—On the vanishing of Hn(X, F) for an n-dimensional variety, Proc. Amer. Math. Soc., 18 (1967), 940–944.MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. E. LARSEN—On the topology of complex projective manifolds, Invent. Math., 19 (1973), 251–260.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. OGUS—Local cohomological dimension of algebraic varietes, Ann. Math., 98 (1973), 327–365.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. PESKINE et L. SZPIRO—Dimension projective finie et cohomologie locale, Pub. Math. de l’I.H.E.S., no 42, 1973.Google Scholar
  15. [15]
    J.-F. BOUTOT—Schéma de Picard local, C.R.Acad. Sc. Paris, t. 277, Série A, 691–694, 8 oct. 1973.zbMATHMathSciNetGoogle Scholar
  16. [16]
    A. OGUS—Formal neighborhoods and formal embeddings, Amer. Journ. of Maths., à paraître.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Lucien Szpiro

There are no affiliations available

Personalised recommendations