Advertisement

Vecteurs différentiables dans les représentations unitaires des groupes de lie

  • Pierre Cartier
16, 17, 18 Novembre 1974
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    F. BRUHAT—Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, 84 (1956), 97–205.zbMATHMathSciNetGoogle Scholar
  2. [2]
    P. CARTIER—Quantum mechanical commutation relations and theta fonctions, in Algebraic groups and discontinuous subgroups, Amer. Math. Soc., 1966, 361–383.Google Scholar
  3. [3]
    L. GÅRDING—Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. USA, 33 (1947), 331–332.zbMATHCrossRefGoogle Scholar
  4. [4]
    I. GELFAND and I. PIATESKII-SHAPIRO—Theory of representations and theory of automorphic functions, Amer. Math. Soc. Translations (2), 26 (1963), 173–200.Google Scholar
  5. [5]
    R. GOODMAN—Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., 143 (1969), 55–76.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. MACKEY—Induced representations of locally compact groups, Ann. of Maths. I, 55 (1952), 101–139; II: 58 (1953), 193–221.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. NELSON—Analytic vectors, Ann. of Maths., 70 (1959), 572–615.zbMATHCrossRefGoogle Scholar
  8. [8]
    N. POULSEN—On C-vectors and intertwining bilinear forms for representations of Lie groups, Journ. Funct. Anal., 9 (1972), 87–120.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. POULSEN—Regularity aspects of the theory of infinite dimensional representations of Lie groups, Thèse de Doctorat, M.I.T., Cambridge, Mass. USA, 1970.Google Scholar
  10. [10]
    L. SCHWARTZ—Sous-espaces hilbertiens et noyaux associés; applications aux représentations des groupes de Lie, in “Deuxième Colloque CBRM sur l’Analyse Fonctionnelle” Liège 1964, 153–163, Gauthier-Villars, Paris, 1964.Google Scholar

L’ouvrage suivant

  1. 1.
    G. WARNER—Harmonic Analysis on semi-simple Lie groups I, Grundlehren vol. 188, Springer-Verlag, Berlin, 1972, contient un chapitre fort complet sur les vecteurs différentiables et analytiques, et une bibliographie fort étendue.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Pierre Cartier

There are no affiliations available

Personalised recommendations