Advertisement

Frobenius et cohomologie locale

d’après R. Hartshorne et R. Speiser, M. Hochster et J. L. Roberts, C. Peskine et L. Szpiro
  • Jean-François Boutot
16, 17, 18 Novembre 1974
Part of the Lecture Notes in Mathematics book series (LNM, volume 514)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    A. GROTHENDIECK—Local Cohomology Séminaire Harvard 1961, notes de R. Hartshorne, Lecture Notes in Math. 41, Springer-Verlag, 1967.Google Scholar
  2. [2]
    A. GROTHENDIECK—Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, SGA 2-1962, North-Holland Publ. Cy, Amsterdam, 1968.Google Scholar
  3. [3]
    R. HARTSHORNE—Cohomological dimension of algebraic varieties, Ann. of Maths. 88 (1968), p. 403–450.MathSciNetCrossRefGoogle Scholar
  4. [4]
    R. HARTSHORNE—Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math. 156, Springer-Verlag, 1970.Google Scholar
  5. [5]
    R. HARTSHORNE and R. SPEISER—Local cohomological dimension in characteristic p, à paraître.Google Scholar
  6. [6]
    J. HERZOG—Ringe der Charakteristik p und Frobenius-funktoren, à paraître.Google Scholar
  7. [7]
    M. HOCHSTER—Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. of Algebra, 25 (1973), 40–57.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. HOCHSTER—Deep local rings, à paraître.Google Scholar
  9. [9]
    M. HOCHSTER and J. L. ROBERTS—Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115–175.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. KATZ—Une formule de congruence pour la fonction ζ, Groupes de Monodromie en Géométrie Algébrique (SGA 7.II), 401–437, Lecture Notes in Math. 340, Springer-Verlag, 1973.Google Scholar
  11. [11]
    S. L. KLEIMAN—On the vanishing of Hn(X, ℱ) for an n-dimensional variety, Proc. Amer. Math. Soc., 18 (1967), 940–944.MathSciNetCrossRefGoogle Scholar
  12. [12]
    E. KUNZ—Characterizations of regular local rings of characteristic p, Amer. J. of Math., 91 (1969), 772–784.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. LAKSOV—The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math., 129 (1972), 1–9.CrossRefzbMATHGoogle Scholar
  14. [14]
    D. MUMFORD—Geometric Invariant Theory, Ergebnisse der Math. 34, Springer-Verlag, 1965.Google Scholar
  15. [15]
    M. P. MURTHY—A note on factorial rings, Arch. Math., 15 (1964), 418–420.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. MUSILI—Postulation formula for Schubert varieties, J. Indian Math. Soc., 36 (1972), 143–171.MathSciNetGoogle Scholar
  17. [17]
    M. NAGATA—Complete reducibility of rational representations of a matrix group, J. Math. Kyoto Univ., 1 (1961), 87–99.MathSciNetzbMATHGoogle Scholar
  18. [18]
    A. OOGUS—Local cohomological dimension of algebraic varieties, Ann. of Maths, 98 (1973), 327–365.CrossRefGoogle Scholar
  19. [19]
    C. PESKINE et L. SZPIRO—Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S., 42 (1973), 47–119.MathSciNetGoogle Scholar
  20. [20]
    C. PESKINE et L. SZPIRO—Sygyzies et multiplicités, C.R. Acad. Sci. Paris, t. 278, Série A, 1421–1424, 1974.MathSciNetzbMATHGoogle Scholar
  21. [21]
    P. ROBERTS—Applications of dualizing complexes, à paraître.Google Scholar
  22. [22]
    P. SAMUEL—Lectures on Unique Factorization Domains, notes de P. Murthy, Tata Institute 30, Bombay, 1964.Google Scholar
  23. [23]
    J.-P. SERRE—Algèbre Locale. Multiplicités, rédigé par P. Gabriel, 2e édition, Lecture Notes in Math. 11, Springer-Verlag, 1965.Google Scholar
  24. [24]
    L. SZPIRO—Cohomologie des ouverts de l’espace projectif sur un corps de caractéristique zéro [d’après A. Ogus], Sém. Bourbaki, exposé 458, novembre 1974, ce volume.Google Scholar

Copyright information

© N. Bourbaki 1976

Authors and Affiliations

  • Jean-François Boutot

There are no affiliations available

Personalised recommendations