Advertisement

On optimal approximation

  • Arthur Sard
Conference paper
  • 359 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 501)

Abstract

This note presents a new instance of spline approximation in which the observation of a function is its value on an interior contour or hypersurface and the coobservation is its gradient. There follow three comments relevant to the application of the theory of optimal approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sard, A.: Optimal approximation. J. Functional Analysis 1(1967), 222–244 and 2(1968), 368–369.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sard, A.: Approximation based on nonscalar observations. J. Approximation Theory 8(1973), 315–334.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sard, A.: Instances of generalized splines. In K. Böhmer, G. Meinardus, W. Schempp, Editors: Spline-Funktionen. Bibliographisches Institut, Mannheim, Wien, Zürich. 215–241, 1974.Google Scholar
  4. 4.
    Delvos, F.-J. and W. Schempp: Sard's method and the theory of spline systems. J. Approximation Theory 14(1975), 230–243.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Delvos, F.-J.: On surface interpolation. To appear in J. Approximation Theory.Google Scholar
  6. 6.
    Delvos, F.-J. and Posdorf, H.: On optimal tensor product approximation. To appear in J. Approximation Theory.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Arthur Sard
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLa Jolla

Personalised recommendations