Bemerkungen zur Numerischen Lösung von Anfangswertproblemen mit Hilfe Nichtlinearer Spline-Funktionen

  • G. Micula
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 501)


Multistep Method Spline Function Approximation Regular Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.)
    LAMBERT J.D. and SHOW, B.: On numerical solution of y′=f(x,y) by a class of formulae based on rational approximation. Math. Comput. 19 (1965) pp. 456–462.zbMATHGoogle Scholar
  2. 2.)
    LAMBERT J.D. and SHOW, B.: A method for the numerical solution of y′=f(x,y) based on a self-adjusting non-polynomial interpolant, Math. Comput. 20 (1966), pp. 11–20.MathSciNetzbMATHGoogle Scholar
  3. 3.)
    LAMBERT J.D. and SHOW, B.: A generalization of multistep methods for ordinary differential equation, Numer. Math. 8 (1966) pp. 250–263.MathSciNetCrossRefGoogle Scholar
  4. 4.)
    LAMBERT, J.D.: Nonlinear methods for stiff systems of ordinary differential equations. Proc. Dundee Conference on the Numerical Solution of Differential Equations, Springer Lecture Notes, 1973.Google Scholar
  5. 5.)
    LOSCALZO, F.R. and TALBOT, T.D.: Spline function approximation for solution of ordinary differential equations. SIAM J. Numer. Anal. 4(1967) pp. 433–445.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.)
    MICULA, G.: Approximate solution of differential equation y″=f(x,y) with spline functions. Math. Comput. 27 (1973), pp. 807–816.MathSciNetzbMATHGoogle Scholar
  7. 7.)
    MICULA, G.: Die numerische Lösung nichtlinearer Differentialgleichungen unter Verwendung von Spline-Funktionen. Proc. Conf. “Numerische Behandlung nichtlinearer Integrodifferential-und Differentialgleichungen”, Oberwolfach, 1973. Lect. Notes in Mathematics 395, 57–83. Berlin-Heidelberg-New York: Springer, 1974.zbMATHGoogle Scholar
  8. 8.)
    MICULA, G.: Über die numerische Lösung nichtlinearer Differentialgleichungen mit Splines von niedriger Ordnung Numerische Behandlung von Differentialgleichungen”, ISNM 27 (1975), pp. 185–195, Birkhäuser-Verlag, Basel-Stuttgart, 1975.MathSciNetzbMATHGoogle Scholar
  9. 9.)
    RUNGE, R.: Lösung von Anfangswertproblemen mit Hilfe nichtlinearer Klassen von Spline-Funktionen, Dissertation. University of Münster, 1972.Google Scholar
  10. 10.)
    SCHABACK, R.: Interpolation mit nichtlinearen Klassen von Spline-Funktionen J. Approximation Theory 8 (1973) pp. 173–188.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.)
    WERNER, H.: Tschebyscheff-Approximation mit einer Klasse rationaler Spline-Funktionen, J. Approximation Theory, 10 (1974), pp. 74–92.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.)
    WERNER, H.: Interpolation and integration of initial value problems of ordinary differential equations by regular splines, SIAM J. Numer. Anal. 12 (2975) pp. 255–271.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • G. Micula
    • 1
  1. 1.Faculty of MathematicsUniversity of ClujCluj-NapocaRomania

Personalised recommendations