Periodische Splinefunktionen

  • Günter Meinardus
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 501)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ahlberg, J.H., E.N. Nilson and J.L. Walsh: The theory of splines and their applications. New York, Academic Press 1967.zbMATHGoogle Scholar
  2. [2]
    Cheney, E.W. and F. Schurer: A note on the operators arising in spline approximation J A T 1, 94–102 (1968).MathSciNetzbMATHGoogle Scholar
  3. [3]
    Cheney, E.W. and F. Schurer: On interpolating cubic splines with equally spaced nodes. Indag. Math. 30, 517–524 (1968).MathSciNetzbMATHGoogle Scholar
  4. [4]
    Curry, H.B. and I.J. Schoenberg: On Polya frequency functions IV. J. Analyse Math. 17, 71–107 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    de Boor, C.: On cubic spline functions which vanish at all knots. MRC Report No. 1424 (1974).Google Scholar
  6. [6]
    Golomb, M.: Approximation by periodic splines on uniform meshes. J A T 1, 26–65 (1968).MathSciNetzbMATHGoogle Scholar
  7. [7]
    Krinzeßa, F.: Zur periodischen Spline-Interpolation. Dissertation, Bochum 1969.Google Scholar
  8. [8]
    Nörlund, N.E.: Vorlesungen über Differenzenrechnung. Chelsea Publ., New York, 1954.Google Scholar
  9. [9]
    Marsden, M.: Cubic spline interpolation of continuous functions. J A T 10, 103–111 (1974)MathSciNetzbMATHGoogle Scholar
  10. [10]
    Meinardus, G. und G. Merz: Zur periodischen Spline-Interpolation. Erschienen in: Spline-Funktionen, Hrsg. K. Böhmer, G. Meinardus und W. Schempp. BI-Verlag Mannheim 1974Google Scholar
  11. [11]
    Richards, F.B.: Best bounds for the uniform periodic spline interpolation operator. J A T 7, 302–317 (1973).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Günter Meinardus

There are no affiliations available

Personalised recommendations