Advertisement

An extension of Sard's method

  • Franz-Jürgen Delvos
  • Walter Schempp
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 501)

Keywords

Integral Relation Optimal Interpolation Abstract Setting Green Kernel Periodic Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. AHLBERG, E. N. NILSON, and J. L. WALSH, “The theory of splines and their applications”, Academic Press, New York, 1967.zbMATHGoogle Scholar
  2. 2.
    C. DE BOOR and R. E. LYNCH, On splines and their minimum properties, J. Math. Mech., 15 (1966), 953–989.MathSciNetzbMATHGoogle Scholar
  3. 3.
    F. J. DELVOS, and W. SCHEMPP, Sard's method and the theory of spline systems, J. Approximation Theory 14 (1975), 230–243.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F. J. DELVOS and W. SCHEMPP, On optimal periodic spline interpolation, J. Math. Analysis Appl., to appear.Google Scholar
  5. 5.
    S. KARLIN, “Total positivity”, Stanford University Press, Stanford, California, 1968.zbMATHGoogle Scholar
  6. 6.
    S. g. MIKHLIN, “The problem of the minimum of a quadratic functional”, Holden Day, San Francisco-London-Amsterdam, 1965.zbMATHGoogle Scholar
  7. 7.
    F. RIESZ, and B. SZ. NAGY, “Vorlesungen über Funktionalanalysis”, Deutscher Verlag der Wissenschaften, Berlin, 1956.zbMATHGoogle Scholar
  8. 8.
    A. SARD, Optimal approximation, J. Functional Analysis 1 (1967), 222–244; 2 (1968), 368–369.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. SARD, Approximation based on nonscalar observations, J. Approximation Theory 8 (1973), 315–334.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. SARD, Instances of generalized splines, in “Spline-Funktionen” (eds.: K. Böhmer, G. Meinardus, W. Schempp), BI-Wissenschaftsverlag, Mannheim-Wien-Zürich, 1974.Google Scholar
  11. 11.
    R. SCHABACK, Konstruktion and algebraische Eigenschaften von m-Spline-Interpolierenden, Numer. Math. 21 (1973), 166–180.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. SCHABACK, Konstruktion von Spline-Interpolierenden und Peano-Kerne, in “Spline-Funktionen” (ed.: K. Böhmer, G. Meinardus, W. Schempp), BI-Wissenschaftsverlag, Mannheim-Wien-Zürich, 1974.Google Scholar
  13. 13.
    W. SCHEMPP und U. TIPPENHAUER, Reprokerne zu Spline-Grundräumen, Math. Z., 136 (1974), 357–369.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. H. SCHULTZ, “Spline Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.zbMATHGoogle Scholar
  15. 15.
    W. I. SMIRNOW, “Lehrgang der höheren Mathematik V”, Deutscher Verlag der Wissenschaften, Berlin, 1967.zbMATHGoogle Scholar
  16. 16.
    H. TRIEBEL, “Höhere Analysis”, Deutscher Verlag der Wissenschaften, Berlin, 1972.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Franz-Jürgen Delvos
    • 1
  • Walter Schempp
    • 1
  1. 1.Lehrstuhl für Mathematik IUniversität SiegenSiegen 21

Personalised recommendations