Skip to main content

Cardinal interpolation and spline functions VIII. The budan-fourier theorem for splines and applications

  • Conference paper
  • First Online:
Spline Functions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 501))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Birkhoff and C. de Boor, Error bounds for spline interpolation, J. Math. Mech. 13 (1964) 827–836.

    MathSciNet  MATH  Google Scholar 

  2. C. de Boor, On cubic spline functions which vanish at all knots, MRC TSR 1424, 1974; Adv. Math. (1975).

    Google Scholar 

  3. H. G. Burchard, Extremal positive splines with applications to interpolation and approximation by generalized convex functions, Bull. Amer. Math. Soc. 79 (1973) 959–963.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Cavaretta, Jr., An elementary proof of Kolmogorov's theorem, Amer. Math. Monthly, 81 (1974), 480–486.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. R. Gantmacher and M. G. Krein, “Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme”, (transl. from 2nd Russian ed. of 1950), Akademie Verlag, Berlin, 1960.

    Google Scholar 

  6. Charles A. Hall and W. Weston Meyer, Optimal error bounds for cubic spline interpolation, GMR-1556, Gen. Motors Res. Labs., Warren, Michigan, Mar. 1974, iii+25pp.

    Google Scholar 

  7. S. Karlin and C. Micchelli, The fundamental theorem of algebra for monosplines satisfying boundary conditions, Israel J. Math. 11 (1972) 405–451.

    Article  MathSciNet  MATH  Google Scholar 

  8. А. Н. Колмогоров, О Неравенствах межлу верхними гранями посделоватедгнщх производнщх функции на Бесионечном интерваде, Ччен. зап. МГУ, ВЫР. 30, “Математука”, 30 (1939), 3–13; a translation into English has appeared as: A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, in Amer. Mathem. Soc. Translations 4 (1949) 233–243.

    Google Scholar 

  9. E. Landau, Einige Ungleichungen für zweimal differentiirbare Funktionen, Proc. London Math. Soc. (2) 13 (1913) 43–49.

    MATH  Google Scholar 

  10. C. A. Micchelli, Cardinal £-splines, in “Studies in splines and approximation theory”, S. Karlin, C. A. Micchelli, A. Pinkus and I. J. Schoenberg, Academic Press, New York, 1975.

    Google Scholar 

  11. C. A. Micchelli, Oscillation matrices and cardinal spline interpolation, in “Studies in splines and approximation theory”, S. Karlin et al., Academic Press, New York, 1975.

    Google Scholar 

  12. E. N. Nilson, Polynomial splines and a fundamental eigenvalue problem for polynomials, J. Approx. Theory 6 (1972) 439–465.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Richards, Best bounds for the uniform periodic spline interpolation operator, J. Approx. Theory 7 (1973) 302–317.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. J. Schoenberg, Zur Abzählung der reellen Wurzeln algebraischer Gleichungen, Math. Zeit. 38 (1934) 546–564.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. J. Schoenberg, “Cardinal Spline Interpolation”, CBMS Vol. 12, SIAM, Philadelphia, 1973.

    Book  MATH  Google Scholar 

  16. I. J. Schoenberg, The elementary cases of Landau's problem of inequalities between derivatives, Amer. Math. Monthly 80 (1973) 121–148.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. J. Schoenberg, On remainders and the convergence of cardinal spline interpolation for almost periodic functions, MRC TSR 1514, Dec. 1974; in “Studies in splines and approximation theory”, S. Karlin et al., Academic Press, New York, 1975.

    Google Scholar 

  18. I. J. Schoenberg, On Charles Micchelli's theory of cardinal £-splines, MRC TSR 1511, Dec. 1974; in “Studies in splines and approximation theory”, S. Karlin et al., Academic Press, New York, 1975.

    Google Scholar 

Download references

Authors

Editor information

Klaus Böhmer Günter Meinardus Walter Schempp

Additional information

Dedicated to M. G. Krein

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

de Boor, C., Schoenberg, I.J. (1976). Cardinal interpolation and spline functions VIII. The budan-fourier theorem for splines and applications. In: Böhmer, K., Meinardus, G., Schempp, W. (eds) Spline Functions. Lecture Notes in Mathematics, vol 501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0079740

Download citation

  • DOI: https://doi.org/10.1007/BFb0079740

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07543-1

  • Online ISBN: 978-3-540-38073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics