Advertisement

Formulas with linearly ordered quantifiers

  • H. J. Keisler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 72)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chang, C. C., this volume.Google Scholar
  2. [2]
    Frayne, T., Morel, A. and Scott, D., Reduced direct products, Fund. Math., 51 (1962), 195–248.MathSciNetMATHGoogle Scholar
  3. [3]
    Fuhrken, G., Languages with the added quantifier “there exist at least ℵαTM, 121–131.Google Scholar
  4. [4]
    Henkin, L., Some remarks on infinitely long formulas, Infinitistic methods, Warsaw 1961, 167–183.Google Scholar
  5. [5]
    Keisler, H. J., Finite approximations of infinitely long formulas, TM, 158–170.Google Scholar
  6. [6]
    -, Some applications of infinitely long formulas, J. Symb. Logic, 30 (1965), 339–349.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    -, On cardinalities of ultraproducts, Bull. Amer. Math. Soc., 70 (1964), 644–647.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    -, Ultraproducts and saturated models, Indag. Math., 26 (1964), 178–186.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    -, Ultraproducts which are not saturated, J. Symb. Logic, 32 (1967), 23–46.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Keisler, H. J., Infinite quantifiers and continuous games, symposium on applications of model theory held at Cal. Inst. of Tech., 1967. To appear.Google Scholar
  11. [11]
    Lopez-Escobar, E., On defining well-orderings, Fund. Math., 59 (1966), 13–21.MathSciNetMATHGoogle Scholar
  12. [12]
    Malitz, J., Problems in the model theory of infinite languages. Doctoral dissertation, Univ. of Cal., Berkeley, 1966.Google Scholar
  13. [13]
    Morley, M. and Vaught, R., Homogeneous universal models, Math. Scand., 11 (1962), 37–57.MathSciNetMATHGoogle Scholar
  14. [14]
    Scott, D., Logic with denumerably long formulas and finite strings of quantifiers, TM, 329–341.Google Scholar
  15. [15]
    Takeuti, G., this volume.Google Scholar
  16. [16]
    Keisler, H. J. and Morley, M., On the number of homogeneous models of a given power, Israel. J. Math., 5 (1967), 73–78.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Feferman, S. and Vaught, R., First order properties of products of algebraic systems, Fund. Math., 47 (1959), 57–103.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • H. J. Keisler
    • 1
    • 2
  1. 1.University of WisconsinWisconsinUSA
  2. 2.University of californiaLos Angeles

Personalised recommendations