Infinite terms and recursion in higher types

  • H. Schwichtenberg
  • S. S. Wainer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 500)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Aczel and P. G. Hinman, “Recursion in the Superjump”, in Generalized Recursion Theory (Eds. Fenstad and Hinman), North-Holland (1974).Google Scholar
  2. [2]
    S. Feferman, “Classifications of Recursive Functions by means of Hierarchies”, Trans. Amer. Math. Soc. vol 104 (1962) pp. 101–122.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Feferman, “Ordinals and Functionals in Proof Theory”, Proc. of Int. Congress of Mathematicians Nice (1970), pp. 229–233.Google Scholar
  4. [4]
    S. Feferman, “Recursion in Total Functionals of Finite Type”, to appear.Google Scholar
  5. [5]
    S. C. Kleene, “Recursive Functionals and Quantifiers of Finite Types I, II”, Trans. Amer. Math. Soc. vol 91 (1959) pp. 1–52, vol 108 (1963) pp. 106–142.MathSciNetzbMATHGoogle Scholar
  6. [6]
    E. G. K. Lopez-Escobar, “Remarks on an Infinitary Language with Constructive Formulas”, Journ. Symb. Logic vol 32 (1967) pp. 305–319.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Y. N. Moschovakis, “Hyperanalytic Predicates”, Trans. Amer Math. Soc. vol 129 (1967) pp. 249–282.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. A. Platek, “A Countable Hierarchy for the Superjump”, in Logic Colloquium '69 (Eds. Gandy and Yates) North-Holland (1971).Google Scholar
  9. [9]
    H. Schwichtenberg, “Elimination of Higher Type Levels in Definitions of Primitive Recursive Fnls. by Transfinite Recursion”, to appear in Proc. of Bristol Logic Colloquium 1973 (Eds. Rose and Shepherdson), North-Holland.Google Scholar
  10. [10]
    W. W. Tait, “Infinitely Long Terms of Transfinite Type”, in Formal Systems and Recursive Functions (Eds. Crossley and Dummett) North-Holland (1965).Google Scholar
  11. [11]
    S. S. Wainer, “A Hierarchy for the 1-Section of Any Type Two Object”, Journ. Symb. Logic vol 39 (1974) pp. 88–94.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Schwichtenberg
  • S. S. Wainer

There are no affiliations available

Personalised recommendations