Advertisement

Infinite terms and recursion in higher types

  • H. Schwichtenberg
  • S. S. Wainer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 500)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Aczel and P. G. Hinman, “Recursion in the Superjump”, in Generalized Recursion Theory (Eds. Fenstad and Hinman), North-Holland (1974).Google Scholar
  2. [2]
    S. Feferman, “Classifications of Recursive Functions by means of Hierarchies”, Trans. Amer. Math. Soc. vol 104 (1962) pp. 101–122.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Feferman, “Ordinals and Functionals in Proof Theory”, Proc. of Int. Congress of Mathematicians Nice (1970), pp. 229–233.Google Scholar
  4. [4]
    S. Feferman, “Recursion in Total Functionals of Finite Type”, to appear.Google Scholar
  5. [5]
    S. C. Kleene, “Recursive Functionals and Quantifiers of Finite Types I, II”, Trans. Amer. Math. Soc. vol 91 (1959) pp. 1–52, vol 108 (1963) pp. 106–142.MathSciNetzbMATHGoogle Scholar
  6. [6]
    E. G. K. Lopez-Escobar, “Remarks on an Infinitary Language with Constructive Formulas”, Journ. Symb. Logic vol 32 (1967) pp. 305–319.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Y. N. Moschovakis, “Hyperanalytic Predicates”, Trans. Amer Math. Soc. vol 129 (1967) pp. 249–282.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. A. Platek, “A Countable Hierarchy for the Superjump”, in Logic Colloquium '69 (Eds. Gandy and Yates) North-Holland (1971).Google Scholar
  9. [9]
    H. Schwichtenberg, “Elimination of Higher Type Levels in Definitions of Primitive Recursive Fnls. by Transfinite Recursion”, to appear in Proc. of Bristol Logic Colloquium 1973 (Eds. Rose and Shepherdson), North-Holland.Google Scholar
  10. [10]
    W. W. Tait, “Infinitely Long Terms of Transfinite Type”, in Formal Systems and Recursive Functions (Eds. Crossley and Dummett) North-Holland (1965).Google Scholar
  11. [11]
    S. S. Wainer, “A Hierarchy for the 1-Section of Any Type Two Object”, Journ. Symb. Logic vol 39 (1974) pp. 88–94.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Schwichtenberg
  • S. S. Wainer

There are no affiliations available

Personalised recommendations